October 23, 2018

1. Evaluate the following limits, if they exist.

(a)
$$\lim_{x \to 4} \frac{16 - x^2}{x^3 + 64}$$

(b)
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$$

(c)
$$\lim_{x\to 5^-} \frac{|x-5|}{x-5}$$

(d)
$$\lim_{x \to \infty} \frac{x + 3x^2}{4x - 1}$$

2. Is the following function continuous everywhere?

$$f(x) = \begin{cases} \frac{x^2 + 8x + 12}{|x+6|} & x \neq -6\\ 2 & x = -6 \end{cases}$$

3. What value of c would make the following function continuous everywhere?

$$f(x) = \begin{cases} \frac{(x+2)^3}{|x+2|} & x \neq -2\\ c & x = -2 \end{cases}$$

4. Does the following function have any horizontal asymptotes?

$$f(x) = \frac{\sqrt{1 + 4x^6}}{2 - x^3}$$

1

5. Differentiate the following by first-principles.

(a)
$$f(x) = \pi x^{-2}$$

(b)
$$g(x) = \sqrt{9 - 2x}$$

- 6. Differentiate the following functions.
 - (a) $f(x) = e^{7.3}$
 - (b) H(u) = (3u 1)(u + 2)
 - (c) $R(a) = (3a+1)^2$
 - (d) $y = \frac{x^2 + 4x + 3}{\sqrt{x}}$
 - (e) $G(t) = \sqrt{5t} + \frac{\sqrt{7}}{t}$
 - (f) $k(r) = e^r + r^e$
 - (g) $z = \frac{A}{y^{10}} + Be^y$
 - (h) $y = e^{x+1} + 1$
 - (i) $h(r) = \frac{ae^r}{b+e^r}$
 - $(j) \ y = \frac{s \sqrt{s}}{s^2}$
 - $(k) y = (z^2 + e^z)\sqrt{z}$
 - (1) $V(t) = \frac{4+t}{te^t}$
- 7. Find the equation of the tangent that passes through each function at the given point.
 - (a) $y = x + \frac{2}{x}$, P(2,3)
 - (b) $y = \sqrt[4]{x} x$, P(1,0)
- 8. A line intersects the curve $f(x) = -3x^3 + 2x + 1$ at the points (-1,2) and (1,0). For what values of x would the tangent of f(x) be parallel to this line?
- 9. Find a formula to describe the instantaneous rate of change for $g(t) = \frac{t}{e^t}$. Does g(t) have any horizontal tangents?