Test 3 Review

November 20, 2018

1. Differentiate the following functions.

(a)
$$f(x) = \log_4(x + \sqrt{\csc x})$$

(b)
$$g(x) = x^3 \sin^2(4x)$$

(c)
$$h(x) = \log_7 \left(\frac{\sqrt{x^2 + 3} \sin^3 x}{\sqrt[3]{9x}} \right)$$

2.
$$f(x) = \frac{2}{2}(x^2 + x^3)^2$$

- (a) Find the critical numbers.
- (b) Find the intervals of increase and decrease.
- (c) Find the local extrema using the first derivative test and the second derivative test.

$$3. \ f(x) = -3x^3 + 5x + 1$$

- (a) Find the intervals of concavity and inflection points.
- (b) Find the absolute maximum and minimum on the interval [-1,1].
- 4. Using the table of values below, find $(f \circ g)'(1)$.

\boldsymbol{x}	f(x)	g(x)	f'(x)	g'(x)
1	3	2	4	6
2	1	8	5	7
3	7	2	7	9

5. If
$$h(x) = \sqrt{4 + 3f(x)}$$
, $f(1) = 7$, $f'(1) = 4$, find $h'(1)$.

- 6. Sketch a continuous function f that satisfies the following conditions:
 - f(-3) = 0, f(0) = 3, f(2) = 1, f(3) = 0
 - f'(-3) does not exist, f'(0) = f'(2) = 0
 - f'(x) < 0 on $(-\infty, -3)$, (0, 2), $(2, \infty)$
 - f'(x) > 0 on (-3,0)
 - f''(x) < 0 on $(\infty, -3), (-3, 1), (2, \infty)$
 - f''(x) > 0 on (1,2)
- 7. Given $\mathbf{a} = \langle 3, 1, 2 \rangle$, and $\mathbf{b} = \langle 7, 6, 5 \rangle$:
 - (a) Find $\mathbf{b} \mathbf{a}$ and its magnitude.
 - (b) Is $\mathbf{b} \mathbf{a}$ a unit vector? If not, find a unit vector in the same direction.
- 8. An airplane is heading due north at 800 km/h and it encounters a wind blowing east at 100 km/h. Find the resultant ground velocity of the plane.