Tutorial 11

Week of November 26, 2018

- 1. Suppose we have two vectors $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ in \mathbb{R}^3 . Show that for any non-zero scalars $c, d \in \mathbb{R}$:
 - (a) $(c\mathbf{a}) \cdot (d\mathbf{b}) = cd(\mathbf{a} \cdot \mathbf{b})$
 - (b) $(c\mathbf{a}) \times (d\mathbf{b}) = cd(\mathbf{a} \times \mathbf{b})$
- 2. Find $\mathbf{a} \cdot \mathbf{b}$.
 - (a) $\mathbf{a} = \langle 5, -2 \rangle$, $\mathbf{b} = \langle 3, 4 \rangle$
 - (b) $\mathbf{a} = \langle 6, -2, 3 \rangle, \quad \mathbf{b} = \langle 2, 5, -1 \rangle$
 - (c) $\mathbf{a} = 2\mathbf{i} + \mathbf{j}$, $\mathbf{b} = \mathbf{i} \mathbf{j} + \mathbf{k}$
 - (d) $\mathbf{a} = 3\mathbf{i} + 2\mathbf{j} \mathbf{k}$, $\mathbf{b} = 4\mathbf{i} + 5\mathbf{k}$
 - (e) $|\mathbf{a}| = 7$, $|\mathbf{b}| = 4$, $\theta = 30^{\circ}$
- 3. Find $\mathbf{a} \times \mathbf{b}$. Verify that the cross product is orthogonal to \mathbf{a} and \mathbf{b} .
 - (a) $\mathbf{a} = \langle 4, 3, -2 \rangle, \quad \mathbf{b} = \langle 2, -1, 1 \rangle$
 - (b) a = 3i + 3j 3k, b = 3i 3j + 3k
- 4. Find the angles of the triangle given by the points P(2,0), Q(0,3), R(3,4).
- $5.\,$ Using the properties of the cross product, compute the following:
 - (a) $\mathbf{k} \times (\mathbf{i} 2\mathbf{j})$
 - (b) $(\mathbf{i} + \mathbf{j}) \times (\mathbf{i} \mathbf{j})$