Tutorial 5

Week of October 15, 2018

Remember to review Figure 7 on Page 158 for instances when a function is not differentiable at a point.

1. Find the equation of the tangent line to the curve at the given point.

$$f(x) = \frac{1}{x-1}, \quad P(2,1)$$

Recall that $\frac{a}{b}$ is equivalent to $a \times \frac{1}{b}$. It follows that:

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{1}{h} \left(f(x+h) - f(x) \right)$$

$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{(2+h) - 1} - \frac{1}{2-1} \right) = \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{h+1} - \frac{1}{1} \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{h+1} - \frac{1}{1} \frac{(h+1)}{(h+1)} \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{1 - (h+1)}{h+1} \right) = \lim_{h \to 0} \frac{1}{h} \left(\frac{-h}{h+1} \right) = \lim_{h \to 0} \frac{-1}{h+1}$$

$$= -1$$

$$y = 1, m = -1, x = 2, b = ?$$

$$y = 1, m = -1, x = 2, b = 0$$

$$1 = (-1)(2) + b$$

$$b = 1 + 2 = 3$$

The equation of the tangent line to the curve f(x) at the point P(2,1) is y=-x+3.

2. (a) Find the slope of the tangent to the curve $y = 1/\sqrt{x}$ for any given x in the domain.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}} \right) = \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{\sqrt{x+h}} \frac{\sqrt{x}}{\sqrt{x}} - \frac{1}{\sqrt{x}} \frac{\sqrt{x+h}}{\sqrt{x+h}} \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x(x+h)}} \right) = \lim_{h \to 0} \frac{1}{h} \left(\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x(x+h)}} \frac{(\sqrt{x} + \sqrt{x+h})}{(\sqrt{x} + \sqrt{x+h})} \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{x - (x+h)}{\sqrt{x(x+h)}} \frac{1}{(\sqrt{x} + \sqrt{x+h})} \right) = \lim_{h \to 0} \frac{1}{h} \left(\frac{-h}{\sqrt{x(x+h)}} \frac{-h}{(\sqrt{x} + \sqrt{x+h})} \right)$$

$$= \lim_{h \to 0} \frac{-1}{\sqrt{x^2} (2\sqrt{x})} = \frac{-1}{2\sqrt{x^3}}$$

$$= -\frac{1}{2} x^{-3/2}$$

Given some arbitrary point (v, w) that lies on this curve, the equation of its tangent line will be:

$$y = \left(-\frac{1}{2}v^{-3/2}\right)(x) + b$$

(b) Find equations of the tangent lines at the points (1,1) and $(4,\frac{1}{2})$.

i) At the point
$$(1,1)$$

$$1 = -\frac{1}{2}(1)^{-3/2}(1) + b$$

$$1 = -\frac{1}{2} + b$$

$$b = \frac{3}{2}$$

$$y = -\frac{1}{2}x + \frac{3}{2}$$

ii) At the point
$$\left(4, \frac{1}{2}\right)$$

$$\frac{1}{2} = -\frac{1}{2}(4)^{-3/2}(4) + b$$

$$\frac{1}{2} = -\frac{1}{2\sqrt{4}} + b$$

$$\frac{1}{2} = -\frac{1}{4} + b$$

$$b = \frac{3}{4}$$

$$y = -\frac{1}{16}x + \frac{3}{4}$$

3. If an equation of the tangent line to the curve y = f(x) at the point where a = 2 is y = 4x - 5, find f(2) and f'(2).

Given that the equation of the tangent at a = 2 is y = 4x - 5, it is immediate that f'(2) = 4. The point (2, f(2)) lies on both f(x) and the given tangent line. Therefore we can plug x = 2 directly into the equation of the tangent to obtain f(2):

$$f(2) = 4(2) - 5 = 3$$

4. If the tangent line to y = f(x) at (4,3) passes through the point (0,2), find f(4) and f'(4).

From the fact that (4,3) is a point on f(x), it is obvious that f(4) = 3. Since we are given two points that the tangent line passes through, we can calculate the slope, which is f'(4). The slope of the tangent line at (4,3) is:

$$f'(4) = m = \frac{\Delta y}{\Delta x} = \frac{3-2}{4-0} = \frac{1}{4}$$

- 5. Find the derivative of the function using the definition of derivative.
 - (a) $f(x) = x^{3/2}$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^{3/2} - x^{3/2}}{h} = \lim_{h \to 0} \frac{\sqrt{(x+h)^3} - \sqrt{x^3}}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{(x+h)^3} - \sqrt{x^3}}{h} \cdot \frac{\left(\sqrt{(x+h)^3} + \sqrt{x^3}\right)}{\left(\sqrt{(x+h)^3} + \sqrt{x^3}\right)} = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h\left(\sqrt{(x+h)^3} + \sqrt{x^3}\right)}$$

$$= \lim_{h \to 0} \frac{(x+h-x)\left((x+h)^2 + (x+h)x + x^2\right)}{h\left(\sqrt{(x+h)^3} + \sqrt{x^3}\right)} = \lim_{h \to 0} \frac{h\left((x+h)^2 + (x+h)x + x^2\right)}{h\left(\sqrt{(x+h)^3} + \sqrt{x^3}\right)}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 + (x+h)x + x^2}{\sqrt{(x+h)^3} + \sqrt{x^3}} = \frac{x^2 + x^2 + x^2}{\sqrt{x^3} + \sqrt{x^3}}$$

$$= \frac{3x^2}{2\sqrt{x^3}} = \frac{3}{2}x^{\frac{4}{2} - \frac{3}{2}} = \frac{3}{2}x^{1/2}$$

(b) $f(x) = x^4$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^4 - x^4}{h} = \lim_{h \to 0} \frac{((x+h)^2 - x^2)((x+h)^2 + x^2)}{h}$$

$$= \lim_{h \to 0} \frac{((x+h-x)(x+h+x))((x+h)^2 + x^2)}{h} = \lim_{h \to 0} \frac{h(h+2x)((x+h)^2 + x^2)}{h}$$

$$= \lim_{h \to 0} (h+2x)((x+h)^2 + x^2)$$

$$= (2x)(x^2 + x^2) = (2x)(2x^2) = 4x^3$$

Something to notice:

$$f(x) = x^{3/2}$$

$$f'(x) = \frac{3}{2}x^{1/2} = \frac{3}{2}x^{((3/2)-1)}$$

$$f(x) = x^4$$
$$f'(x) = 4x^3 = 4x^{(4-1)}$$

As you should have seen in lecture this week, we can find general formulas for the derivatives of certain functions so that we don't need to go back to first-principles each time.