Tutorial 7

Week of October 29, 2018

1. Differentiate the following functions.

(a)
$$f(x) = x^2 \sin x$$

(b)
$$g(\theta) = e^{\theta} (\tan \theta - \theta)$$

(c)
$$f(t) = \frac{\cot t}{e^t}$$

(d)
$$r(\theta) = \sin \theta \cos \theta$$

(e)
$$k(x) = \sin^2 x$$

(f)
$$f(x) = (5x^6 + 2x^3)^4$$

(g)
$$g(x) = \frac{1}{\sqrt[3]{x^2 - 1}}$$

(h)
$$h(x) = e^{x^2 - x}$$

(i)
$$y(x) = 3^{x^2 - x}$$

2. Prove that the following are true:

3. Find the equation of the tangent at the given point.

(a)
$$f(x) = e^x \cos x$$
 $P(0,1)$

(b)
$$g(x) = \cos x - \sin x$$
 $P(\pi, -1)$

(c)
$$h(x) = 2^x$$
 $P(0,1)$

(d)
$$G(x) = xe^{-x^2}$$
 $P(0,0)$

4. Let r(x) = f(g(h(x))), where h(1) = 2, g(2) = 3, h'(1) = 4, g'(2) = 5, and f'(3) = 6. Find r'(1).

5. For what values of r does $y = e^{rx}$ satisfy the differential equation y'' + y' - 6y = 0?

6. Find the 50th derivative of $y = \cos 2x$.