Tutorial 8

Week of November 5, 2018

The number f(c) is a

- local maximum value of f if $f(c) \ge f(x)$ for all x in some open interval around c.
- local minimum value of f if $f(c) \leq f(x)$ for all x in some open interval around c.

As such, local extrema cannot occur on the endpoints where a function is defined because we cannot find an open interval around that point.

A **critical number** is a number c in the domain of f such that either f'(c) = 0 or f'(c) does not exist. Notice that c must be in the domain of f but \underline{not} f' !!!

1. For each of the following numbers, a, b, c, d, r, and s, state whether the function whose graph is shown has an absolute maximum or minimum, a local maximum or minimum, or neither a maximum nor a minimum.

2. For each of the following graphs, state the points where the local and global extrema occur.

3. Find the critical numbers of the given functions.

(a)
$$f(x) = x^3 + 6x^2 - 15x$$

(b)
$$f(x) = 2x^3 - 3x^2 - 36x$$

(c)
$$g(t) = |3t - 4|$$

(d)
$$h(p) = \frac{p-1}{p^2+4}$$

(e)
$$g(x) = \sqrt[3]{4 - x^2}$$

4. Find the absolute maximum and minimum of the following functions on the given interval.

(a)
$$f(x) = 3x^4 - 4x^3 - 12x^2 + 1$$
, $[-2, 3]$

(b)
$$f(t) = (t^2 - 4)^3$$
, $[-2, 3]$

(c)
$$f(x) = \frac{x}{x^2 - x + 1}$$
, $[0, 3]$

- 5. For each of the following functions:
 - (i) Find the intervals of increase and decrease
 - (ii) Find the values of the local maximum and minimum
 - (iii) Find the intervals of concavity and inflection points

(a)
$$f(x) = x^3 - 3x^2 - 9x + 4$$

(b)
$$f(x) = 2x^3 - 9x^2 + 12x - 3$$

(c)
$$f(x) = x^2 \ln x$$

- 6. For the following function, find:
 - (a) The vertical and horizontal asymptotes
 - (b) The intervals of increase and decrease
 - (c) The values of the local maximum and minimum
 - (d) The intervals of concavity and inflection points

$$f(x) = e^{-x^2}$$