Tutorial 1 Solutions

Question 1

In the 1986 issue of Consumer Reports, some data on the calorie content of beef hot dogs is given. Here are
the numbers of calories in 20 different hot dog brands:

186, 181, 176, 149, 184, 190, 158, 139, 175, 148
152, 111, 141, 153, 190, 157, 131, 149, 135, 132

Assume that these numbers are the observed values from a random sample of twenty independent normal
random variables with mean p and variance o2, both unknown. Find a 90% two-sided confidence interval
for the mean number of calories p.

As the data are assumed to come from a normal distribution, the sample size is small (n < 30), and we are

estimating o2 using S?, a 100(1 — )% confidence interval for u is given by:
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We begin the calculation of this interval by first entering our data into R.

calories <- c(186, 181, 176, 149, 184, 190, 158, 139, 175, 148,
152, 111, 141, 153, 190, 157, 131, 149, 135, 132)

Next, we calculate some intermediate values that we will store as variables.

xbar <- mean(calories)
s <- sd(calories)

n <- length(calories)

alpha <- 0.10
tval <- gt(alpha/2, df=n-1, lower.tail=FALSE)

Note that the lower.tail=FALSE means that we seek a value ¢ whose area to the right is a//2.

We will take advantage of the fact that basic mathematical operations in R are vectorized. This means that
when they are applied to a vector, they are applied element-wise. For example, the following are equivalent:

3 +c(-1, 1) = 2

HE [1] 1 5
c(3+ (-1 %2), 3+ (1 x*2))

i [1] 1 5



Calculating the confidence interval:

xbar

+ c(-1, 1) = tval * s / sqrt(n)

#HE [1] 148.0956 165.6044

We are 90% confident that the true mean caloric content of these hot dogs is between 148.096 and 165.604.

Question 2

Suppose that Y is normally distributed with mean 0 and unknown variance o2. Then Y2/0? has a chi-square
distribution on 1 degree of freedom. Use the pivotal quantity Y2/o? to find:

(a)

A 95% confidence interval for o2 and o.

A 100(1 — a)% confidence interval for o2 is derived as follows:

2 v? 2
P <X1,1g < =) < X1,g> =l-a
2
X1,1-« 1 X1, 2
P ( Y2 < ; S Y2 = 1 —
Y? Y?
P 5 > g2 > 5 =1—«
X1,1-2 X1, g
Y? Y?
P 5 <02 < 5 =1—«
X1, ¢ X1,1-¢

A 95% confidence interval (o = 0.05) for o2 is given by:
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where 0.025 and 0.975 are the areas to the right of their respective quantiles. Taking the square root
of the endpoints of the above interval gives a 95% confidence interval for o.

A 95% upper confidence bound for o2 and o.

To obtain the 95% upper confidence bound for o2, we simply take the upper bound of the interval
from (a) and replace all instances of /2 with «. This gives the interval:

Y2
0, ——
X%,0.95

where 0.95 is the area to the right of the respective quantile. Note that the lower bound of this interval
is zero since o? is the variance of a normal distribution and must be greater than zero! Taking the
square root of the endpoints of the above interval gives a 95% confidence interval for o.

)




¢) A 95% lower confidence bound for o2 and o.
(c)

To obtain the 95% lower confidence bound for o2, we simply take the lower bound of the interval from
(a) and replace all instances of a/2 with «.. This gives the interval:
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where 0.05 is the area to the right of the respective quantile. Taking the square root of the lower
endpoint of the above interval gives a 95% confidence interval for o.

Question 3

Assume that X, ..., X,, is a random sample of size n from a gamma distribution with o = 2 and unknown

8.

(a) Use the method of moment generating functions to show that 2 Z?Zl X, /B is a pivotal quantity and
has a chi-square distribution with 4n degrees of freedom.

Each X, ~ Gamma(a = 2, ). The MGF for each X is given by:

My(t) = (1—pt)2, t< ;

Let U = 23"  X,/B. By the method of moment generating functions:

My (t) = E (exp {tU})

=E (exp{? (X, + Xy + .. + Xn)}>
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The MGF of U is that of the chi-square distribution on 4n degrees of freedom. It follows that U has
a chi-square distribution on 4n degrees of freedom. Note that although U depends on the unknown
B, its distribution does not. Since the distribution of U does not depend on the unknown g,
U=2 Z:;l X, /P is a pivotal quantity.

(b) Use the pivotal quantity 2 2?11 X,/ B to derive a 95% two-sided confidence interval for 3.



A 100(1 — )% two-sided confidence interval for 3 is obtained as follows:
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Thus, a 95% confidence interval (a = 0.05) for (3 is given by:
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where 0.025 and 0.975 are the areas to the right of their respective quantiles.

(c) Generate a sample of n = 30 observations from a gamma distribution with o = 2 and = 5. Use the
result of part (b) to find a 95% two-sided confidence interval for f.

Before generating random samples, we should set a seed for reproducibility. Set it to whatever number
you wish.

set.seed(120)

Next, we initialise some intermediate variables, for convenience. Note that we do not actually care
about the individual values of our generated sample, only its sum.

n <- 30
numerator <- 2 % sum(rgamma(n=n, shape=2, scale=5))

alpha <- 0.05
chi_lower <- qchisq(alpha/2, df=4xn, lower.tail=FALSE)
chi_upper <- qchisq(1-alpha/2, df=4xn, lower.tail=FALSE)

Putting it all together:

numerator / c(chi_lower, chi_upper)

JHE [1] 4.379201 7.279077

(d) Consider the interval in part (c). Construct 100 such intervals based on 100 independent samples of
size n = 30 from a gamma distribution with o = 2 and § = 5. How many of these intervals contain
the true 37

Again, for reproducibility, we should re-set our seed. Once again, you can set it to whatever number
you wish.



set.seed(99)

Since we will repeat this procedure 100 times, we will store our results in a data frame. This way, we
can once again take advantage of vectorization of basic mathematical operations in R by operating on
the columns of our data frame.

We begin by initialising our 2 2?21 X, values, storing them in a column called double_sum. Again, we
do not actually care about the individual values in our samples, only their sum.

g3d <- data.frame(
double_sum = replicate(n=100, 2 * sum(rgamma(n=n, shape=2, scale=5)))

head(q3d)

HE double_sum
HE 678.0035
HE 519.8549
1HF 630.0145
HE 773.5394
1HF 625.2225
HE 699.4331

ook WN PP

Next, we create columns to keep track of the lower and upper bounds of the resulting confidence
intervals. We make use of the base-R pipe (requires R 4.14), |>, which takes the value on the left and
passes it to the first argument of the function on the right. It just so happens that the first argument
of transform() is the data frame that we wish to operate on!
g3d <- g3d |>

transform(
double_sum / chi_lower,
upr = double_sum / chi_upper

lwr

)

head(g3d)

it double_sum lwr upr
HE 1  678.0035 4.454354 7.403996
jHE 2 519.8549 3.415348 5.676968
HE 3 630.0145 4.139075 6.879942
HE 4 773.5394 5.082007 8.447276
iHE 5 625.2225 4.107593 6.827612
HE 6 699.4331 4.595142 7.638013

Now that we have the lower and upper bounds of our confidence intervals, we can check which intervals
contain the true value of 5 = 5. We will first create a column of logicals to keep track of which intervals
contained the true value of § = 5. Here, we take advantage of the fact that logical comparisons are
also vectorized!
g3d <- g3d |>

transform(contained = (5 >= 1lwr) & (5 <= upr))

head(g3d)

HF double_sum lwx upr contained



HE
HE
HE
HE
HE
HE

678.0035 4.454354 7.403996 TRUE
519.8549 3.415348 5.676968 TRUE
630.0145 4.139075 6.879942 TRUE
773.5394 5.082007 8.447276 FALSE
625.2225 4.107593 6.827612 TRUE
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699.4331 4.595142 7.638013 TRUE

ook WN P

Recall that we can perform mathematical operations with TRUEs (mapped to 1) and FALSEs (mapped
to 0). The number of intervals that contained the true value of 5 =5 is:

sum(g3d$contained)

iHE [1] 98

The proportion of intervals that contained the true value of § =5 is:

mean (q3d$contained)

#HE [1] 0.98

The main takeaways of this computational exercise is to highlight the fact that you don’t always need
to write a for loop and that you should take advantage of vectorization wherever possible. This will
allow you to write code that is functional and readable!

Question 4

The number of traps (defects of a certain kind) in a particular type of metal oxide semiconductor transistor
has a Poisson distribution with (unknown) mean A. A sample of n = 40 metal oxide semiconductor transistors
were randomly selected from a large lot and the number of traps in each transistor in the sample was recorded.
The following data was obtained:

1,3,2,3,2,1,6,3,3,4,5,4,3,5 24,4, 3,6, 1
1,1,4,6,2,2,2,3,4,1,7,1,3,3,1,3,2,3,7, 2

(a) Find a large-sample 98% two-sided confidence interval, [A;, Ay], for the true average number of traps,

A

From lecture, it was shown that for a sufficiently large (n > 30) random sample from a Poisson
distribution, a 100(1 — )% large-sample two-sided confidence interval is given by:

Yj: Za/2'

M)

We begin the computation of this interval by first reading the data into R.

traps <- c¢c(1, 3, 2, 3, 2, 1, 6, 3, 3, 4,
5,4, 3,5,2,4, 4, 3, 6,1,
1, 1, 4, 6, 2, 2, 2, 3, 4, 1,
7, 1, 3, 3,1, 3, 2, 3,7, 2)

As before, we compute the intermediate values and store them as variables, for convenience.



xbar <- mean(traps)
n <- length(traps)

alpha <- 0.02
zval <- gnorm(alpha/2, lower.tail=FALSE)

The 98% two-sided confidence interval is computed as:
xbar + c(-1, 1) * zval % sqrt(xbar / n)
JHE [1] 2.429989 3.720011

Find a large-sample 98% one-sided confidence interval, [5\ 1, 00), for the true average number of traps,
A

This is a one-sided lower confidence bound, so we simply take the lower end of the formula from (a)
and swap out z,, for z,. The lower bound of our one-sided confidence interval is given by:

X —z

o

BE)

To construct this interval in R, we can reuse most of the values from (a). The only value that needs
to be updated is zval (though alpha will remain the same).

zval <- gnorm(alpha, lower.tail=FALSE)

For clarity, we append an Inf (infinity) to the right side of our interval. The 98% one-sided lower
confidence interval is computed as:

c(xbar - zval * sqrt(xbar / n), Inf)

JHE [1] 2.505571 Inf
Interpret the results obtained in (a) and (b).

From (a), we can be 98% confident that the true average number of traps is between 2.43 and 3.72, i.e.

243 < X < 3.72.

From (b), we can be 98% confident that the true average number of traps is greater than or equal to
2.506, i.e.

A > 2.506.

Note: The data used in this question were actually generated from a Poisson distribution with A = 3.
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