
Tutorial 10 Solutions

Notation used in class Notation used in the textbook
𝑛𝑖• = ∑𝑐

𝑗=1 𝑛𝑖𝑗 𝑟𝑖
𝑖 = 1, … , 𝑟 𝑖 = 1, … , 𝑟

𝑛•𝑗 = ∑𝑟
𝑖=1 𝑛𝑖𝑗 𝑐𝑗

𝑗 = 1, … , 𝑐 𝑗 = 1, … , 𝑐

Question 1
Consider the problem of testing the hypothesis of independence:

𝐻0 ∶ There exist probabilities 𝑝𝑖• and 𝑝•𝑗, 𝑖 = 1, … , 𝑟, 𝑗 = 1, … , 𝑐, such that

𝑝𝑖𝑗 = 𝑝𝑖•𝑝•𝑗 for all 𝑖 = 1, … , 𝑟, 𝑗 = 1, … , 𝑐.

𝐻1 ∶ Not 𝐻0.

Here, 𝑝𝑖𝑗 represents the probability that an object or individual selected randomly from the population under
study will belong to category 𝑖 of argument 1 and category 𝑗 of argument 2.

The data is represented by 𝑛𝑖𝑗, 𝑖 = 1, … , 𝑟, 𝑗 = 1, … , 𝑐, which counts the number of observations that fall
in category 𝑖 of argument 1 and category 𝑗 of argument 2.

Note that the probabilities 𝑝𝑖• and 𝑝•𝑗 must satisfy ∑𝑟
𝑖=1 𝑝𝑖• = 1 and ∑𝑐

𝑗=1 𝑝•𝑗 = 1.

Consider estimating 𝑝𝑖• and 𝑝•𝑗 under 𝐻0. Show that the MLEs of 𝑝𝑖• and 𝑝•𝑗 are given by:

̂𝑝𝑖• = 𝑛𝑖•
𝑛 , 𝑖 = 1, … , 𝑟

̂𝑝•𝑗 = 𝑛•𝑗
𝑛 , 𝑗 = 1, … , 𝑐.

Let

𝜽 = {𝑝𝑖•𝑝•𝑗, 𝑖 = 1, … , 𝑟, 𝑗 = 1, … , 𝑐}

be the 𝑟 × 𝑐 dimensional vector of unknown parameters under 𝐻0. Since we have a multinomial experiment,
if 𝐻0 is true, then the likelihood function takes the following form:

ℒ(𝜽 | all 𝑛𝑖𝑗) = 𝑛!
∏𝑟

𝑖=1 ∏𝑐
𝑗=1 𝑛𝑖𝑗!

𝑟
∏
𝑖=1

𝑐
∏
𝑗=1

𝑝𝑛𝑖𝑗
𝑖𝑗
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= 𝑛!
∏𝑟

𝑖=1 ∏𝑐
𝑗=1 𝑛𝑖𝑗!

𝑟
∏
𝑖=1

𝑐
∏
𝑗=1

(𝑝𝑖•𝑝•𝑗)𝑛𝑖𝑗 (Under 𝐻0)

= 𝑛!
∏𝑟

𝑖=1 ∏𝑐
𝑗=1 𝑛𝑖𝑗!

(
𝑟

∏
𝑖=1

𝑝∑𝑗 𝑛𝑖𝑗
𝑖• ) (

𝑐
∏
𝑗=1

𝑝∑𝑖 𝑛𝑖𝑗
•𝑗 )

= 𝑛!
∏𝑟

𝑖=1 ∏𝑐
𝑗=1 𝑛𝑖𝑗!

(
𝑟

∏
𝑖=1

𝑝𝑛𝑖•
𝑖• ) (

𝑐
∏
𝑗=1

𝑝𝑛•𝑗
•𝑗 ) (1)

Recall that the ̂𝜽 that maximizes the likelihood function, will also maximize the log-likelihood function.
Taking the logarithm of (1) and ignoring any terms that do not depend on the unknown parameters, our
quantity of interest becomes:

𝑟
∑
𝑖=1

𝑛𝑖• log (𝑝𝑖•) +
𝑐

∑
𝑗=1

𝑛•𝑗 log (𝑝•𝑗).

Hence, in order to find the MLE, ̂𝜽 (given all 𝑛𝑖𝑗) of 𝜽, we need to solve the following system of equations:

⎧{{
⎨{{⎩

𝜕
𝜕𝑝𝑖•

(∑𝑟
𝑖=1 𝑛𝑖• log (𝑝𝑖•) + ∑𝑐

𝑗=1 𝑛•𝑗 log (𝑝•𝑗)) = 0, 𝑖 = 1, … , 𝑟

𝜕
𝜕𝑝•𝑗

(∑𝑟
𝑖=1 𝑛𝑖• log (𝑝𝑖•) + ∑𝑐

𝑗=1 𝑛•𝑗 log (𝑝•𝑗)) = 0, 𝑗 = 1, … , 𝑐

This system simplifies to:

⎧{{
⎨{{⎩

𝜕
𝜕𝑝𝑖•

∑𝑟
𝑖=1 𝑛𝑖• log (𝑝𝑖•) = 0, 𝑖 = 1, … , 𝑟

𝜕
𝜕𝑝•𝑗

∑𝑐
𝑗=1 𝑛•𝑗 log (𝑝•𝑗) = 0, 𝑗 = 1, … , 𝑐

(2)

where

𝑟
∑
𝑖=1

𝑝𝑖• = 1 and
𝑐

∑
𝑗=1

𝑝•𝑗 = 1,

and hence,

𝑝𝑟• = 1 −
𝑟−1
∑
𝑖=1

𝑝𝑖• and 𝑝•𝑐 = 1 −
𝑐−1
∑
𝑗=1

𝑝•𝑗. (3)

Substituting (3) into (2) results in the new system:

⎧{{
⎨{{⎩

𝑛𝑖•
𝑝𝑖•

− 𝑛𝑟•
𝑝𝑟•

= 0 𝑖 = 1, … , 𝑟 − 1

𝑛•𝑗
𝑝•𝑗

− 𝑛•𝑐
𝑝•𝑐

= 0 𝑗 = 1, … , 𝑐 − 1
(4)
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Denote

𝐴 = 𝑛𝑟•
𝑝𝑟•

and 𝐵 = 𝑛•𝑐
𝑝•𝑐

.

It then follows from (4) that

𝑛𝑖• = 𝐴𝑝𝑖•, 𝑖 = 1, … , 𝑟 (4a)

𝑛•𝑗 = 𝐵𝑝•𝑗, 𝑗 = 1, … , 𝑐 (4b)

Since ∑𝑟
𝑖=1 𝑛𝑖• = 𝑛 and ∑𝑟

𝑖=1 𝑝𝑖• = 1, it follows from (4a) that 𝐴 = 𝑛. Similarly, since ∑𝑐
𝑗=1 𝑛•𝑗 = 𝑛 and

∑𝑐
𝑗=1 𝑝•𝑗 = 1, it follows from (4b) that 𝐵 = 𝑛. Hence, the solutions ̂𝑝𝑖• and ̂𝑝•𝑗 to the system in (4) are:

̂𝑝𝑖• = 𝑛𝑖•
𝑛 , 𝑖 = 1, … , 𝑟

̂𝑝•𝑗 = 𝑛•𝑗
𝑛 , 𝑗 = 1, … , 𝑐

Note: It can be shown (though time consuming) that the matrix of second derivatives of the log-likelihood
at point

𝜽 = ( ̂𝑝𝑖• ̂𝑝•𝑗, 𝑖 = 1, … , 𝑟, 𝑗 = 1, … , 𝑐)

is negative definite, i.e. the estimators ̂𝑝𝑖• and ̂𝑝•𝑗 are indeed the MLEs of 𝑝𝑖• and 𝑝•𝑗, respectively, for
𝑖 = 1, … , 𝑟 and 𝑗 = 1, … , 𝑐.

Question 2
(14.18) A study of the amount of violence viewed on television as it relates to the age of the viewer
yielded the results shown in the accompanying table for 81 people. (Each person in the study was classified,
according to the person’s TV viewing habits, as a low-violence or high-violence viewer.) Do the data indicate
that viewing of violence is not independent of age of viewer, at the 5% significance level?

Age
Viewing 16-34 35-54 55 and over
Low violence 8 12 21
High violence 18 15 7

The hypotheses we are interested in testing are:

𝐻0 ∶ The viewing of violence is independent of age
vs

𝐻1 ∶ The viewing of violence is not independent of age

We begin by entering the data into R.
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television <- matrix(
c(8, 12, 21, 18, 15, 7), byrow=TRUE, nrow=2, ncol=3,
dimnames = list(c("Low violence", "High violence"), c("16-34", "35-54", "55+"))

)

television

## 16-34 35-54 55+
## Low violence 8 12 21
## High violence 18 15 7

We can perform the required chi-square test using the chisq.test() function introduced in last week’s
tutorial.
chisq.test(television)

##
## Pearson's Chi-squared test
##
## data: television
## X-squared = 11.169, df = 2, p-value = 0.003756

From the output above, we can see that the 𝑝-value is 0.003756. Since the 𝑝-value is less than 0.05, we reject
the null hypothesis in favour of the alternative. There is sufficient evidence to support the claim that the
viewing of violence is not independent of age.

Question 3
(14.26) A manufacturer of buttons wished to determine whether the fraction of defective buttons produced
by three machines varied from machine to machine. Samples of 400 buttons were selected from each of
the three machines, and the number of defectives were counted for each sample. The results are shown in
the table below. Do these data present sufficient evidence to indicate that the fraction of defective buttons
varied from machine to machine?

Machine number Number of defectives
1 16
2 24
3 9

(a) Test, using 𝛼 = 0.05, with a 𝜒2 test.

Let 𝑝𝑖 be the true fraction of defective buttons produced by one of the three machines, 𝑖 = 1, … , 3.
Then the hypotheses we are interested in testing are:

𝐻0 ∶ 𝑝1 = 𝑝2 = 𝑝3 = 𝑝 vs 𝐻1 ∶ At least one 𝑝𝑖 ≠ 𝑝

Next, we expand our table with a column for counts of non-defectives. If we were doing this question
by hand, we could also include the row totals, column totals, and grand total.

4



Machine number Number of defectives Number of non-defectives Total
1 16 384 400
2 24 376 400
3 9 391 400

Total 49 1151 1200

Note that if we were approaching this question by hand, the procedure is identical to that of working
with contingency tables, as we have done in the previous tutorial. The calculation of the test statistic is
the same and its degrees of freedom follows the same formula. The main difference lies in the statement
of the hypotheses of interest.

To perform this test in R, we begin by entering the data and then passing it to the chisq.test()
function.
buttons <- matrix(

c(16, 384, 24, 376, 9, 391), byrow=TRUE, nrow=3, ncol=2,
dimnames = list(paste("Machine", 1:3), c("Defectives", "Non-defectives"))

)

buttons

## Defectives Non-defectives
## Machine 1 16 384
## Machine 2 24 376
## Machine 3 9 391

chisq.test(buttons)

##
## Pearson's Chi-squared test
##
## data: buttons
## X-squared = 7.1916, df = 2, p-value = 0.02744

The 𝑝-value of this test is 0.02744. Since the 𝑝-value is less than 0.05, we reject the null hypothesis in
favour of the alternative. There is sufficient evidence to support the claim that the fraction of defective
buttons varies from machine to machine.

(b) Test, using 𝛼 = 0.05, with a likelihood ratio test. (Refer to exercise 10.106, covered in Tutorial 5
Question 2.)

Imitating the setup of exercise 10.106 (Tutorial 5 Question 2), the likelihood ratio is calculated as:

𝜆 =
(∑ 𝑛𝑖

1200 )
∑ 𝑛𝑖

(1 − ∑ 𝑛𝑖
1200 )

1200−∑ 𝑛𝑖

∏3
𝑖=1 ( 𝑛𝑖

400)
𝑛𝑖 (1 − 𝑛𝑖

400)
400−𝑛𝑖

,

where 𝑛𝑖 counts the number of defective buttons produced by machine 𝑖. Prior to computing the value
of −2 log (𝜆), we should use log properties to simplify the expression, as demonstrated in Tutorial 5
Question 2.

In R, we calculate the value of our test statistic by reusing the code from Tutorial 5 Question 2 and
making some minor modifications:
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n <- c(16, 24, 9)
sum_n <- sum(n)

statistic <- -2 * (sum_n * log(sum_n / 1200) + (1200 - sum_n) * log(1 - sum_n / 1200)
- sum(n * log(n / 400)) - sum((400 - n) * log(1 - n / 400)))

statistic

## [1] 7.378884

The degrees of freedom is calculated as:

𝑘 = dim(Ω) − dim(Ω0) = 3 − 1 = 2,

for we have three free parameters in the unrestricted space, and one free parameter in the space
governed by the null hypothesis.

The (approximate) 𝑝-value of the test is:
pchisq(statistic, df=3-1, lower.tail=FALSE)

## [1] 0.02498594

Since the 𝑝-value is less than 0.05, we reject the null hypothesis in favour of the alternative once again
and make the same concluding remarks as in (a).

Question 4
(14.38) Counts on the number of items per cluster (or colony or group) must necessarily be greater than
or equal to one. Thus, the Poisson distribution generally does not fit these kinds of counts. For modelling
counts on phenomena such as number of bacteria per colony, number of people per household, and number
of animals per litter, the logarithmic series distribution often proves useful. This discrete distribution has
probability function given by

𝑝(𝑦 | 𝜃) = − 1
ln (1 − 𝜃) ⋅ 𝜃𝑦

𝑦 , 𝑦 = 1, 2, 3, … , 0 < 𝜃 < 1,

where 𝜃 is an unknown parameter.

(a) Show that the MLE ̂𝜃 of 𝜃 satisfies the equation

𝑌 =
̂𝜃

−(1 − ̂𝜃) ln (1 − ̂𝜃)
, where 𝑌 = 1

𝑛
𝑛

∑
𝑖=1

𝑌𝑖.

The likelihood function is given by:

ℒ(𝜃 | 𝐲) =
𝑛

∏
𝑖=1

𝑝(𝑦𝑖 | 𝜃)

= (− 1
ln (1 − 𝜃))

𝑛 𝜃∑𝑖 𝑦𝑖

∏𝑛
𝑖=1 𝑦𝑖

.

6



The log-likelihood function is given by:

ℓ(𝜃 | 𝐲) = 𝑛 ln (− 1
ln (1 − 𝜃)) +

𝑛
∑
𝑖=1

𝑦𝑖 ln (𝜃) −
𝑛

∑
𝑖=1

ln (𝑦𝑖).

The first derivative of the log-likelihood with respect to 𝜃 is:

𝑑ℓ
𝑑𝜃 = 𝑛

ln (1 − 𝜃)(1 − 𝜃) + 1
𝜃

𝑛
∑
𝑖=1

𝑦𝑖

We then set the first derivative equal to zero by evaluating at 𝜃 = ̂𝜃.

𝑑ℓ
𝑑𝜃 ∣

𝜃= ̂𝜃
= 0

𝑛
ln (1 − ̂𝜃)(1 − ̂𝜃)

+ 1
̂𝜃

𝑛
∑
𝑖=1

𝑦𝑖 = 0

1
̂𝜃

𝑛
∑
𝑖=1

𝑦𝑖 = −𝑛
ln (1 − ̂𝜃)(1 − ̂𝜃)

1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖 = − ̂𝜃
ln (1 − ̂𝜃)(1 − ̂𝜃)

𝑦 = − ̂𝜃
ln (1 − ̂𝜃)(1 − ̂𝜃)

,

as desired.

(b) The data in the following table give frequencies of observation for counts on the number of bacteria
per colony, for a certain type of soil bacteria.

Bacteria per colony 1 2 3 4 5 6 7+
Number of colonies observed 359 146 57 41 26 17 29

Test the hypothesis that these data fit a logarithmic series distribution. Use 𝛼 = 0.05. (Notice that
the value 𝑦 must be approximated because we do not have exact information on counts greater than
six.)

We first read the data into R.
bacteria <- data.frame(

number = 1:7,
observed_count = c(359, 146, 57, 41, 26, 17, 29)

)

bacteria

## number observed_count
## 1 1 359
## 2 2 146
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## 3 3 57
## 4 4 41
## 5 5 26
## 6 6 17
## 7 7 29

Since we do not have a closed form solution for ̂𝜃, we must use numerical methods to solve for ̂𝜃 (via
intermediate value theorem). To do this, we first take the result from (a) and rearrange it to obtain a
function that equals zero.

𝑦 = − ̂𝜃
ln (1 − ̂𝜃)(1 − ̂𝜃)

𝑦 ⋅ ln (1 − ̂𝜃)(1 − ̂𝜃) = − ̂𝜃

̂𝜃 + 𝑦 ⋅ ln (1 − ̂𝜃)(1 − ̂𝜃) = 0

Since this function depends on the mean count, we should calculate this now. Recall that since this is
tabulated count data, the mean is not calculated by simply averaging the observed count values.
mean_count <- with(bacteria, sum(number * observed_count) / sum(observed_count))

mean_count

## [1] 2.105185

We then define the required function of ̂𝜃 as a function in R.
g <- function(theta) {

theta + mean_count * log(1 - theta) * (1 - theta)
}

To find a root of this function, we use the uniroot() function that is built into R. Since we have the
restriction that 𝜃 ∈ (0, 1), we should search within this interval.
uniroot(g, interval=c(0.0001, 0.9999))

## $root
## [1] 0.738445
##
## $f.root
## [1] 3.302951e-07
##
## $iter
## [1] 7
##
## $init.it
## [1] NA
##
## $estim.prec
## [1] 6.103516e-05

The output of the uniroot() function gives more information than what we require. The value of
interest is contained under $root. Let us store this in a variable called theta_mle.
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theta_mle <- uniroot(g, interval=c(0.0001, 0.9999))$root

theta_mle

## [1] 0.738445

Now that we have an estimate for 𝜃 via ̂𝜃, we need the expected counts, which are obtained by
multiplying the overall sample size with the expected probabilities. These probabilities will be obtained
from the probability mass function of the logarithmic series distribution. Since this distribution is not
built into R, we will need to create our own. I will do so while also following the conventions of existing
distribution functions in R, such as starting the function name with a d and making sure that it is
vectorized over its main argument (i.e. if I supply a vector of length five, I should obtain a vector of
length five back as the output. However, unlike the distribution functions that already exist in R, I
will not vectorize over the theta argument, since for the purposes of this question, we will only be
using a single value for theta.
dlogseries <- function(x, theta) {

if (any(x %% 1 != 0)) {
warning("`x` contains values that are not whole numbers.")

}

if (any(x < 1)) {
warning("`x` contains values that are not greater than or equal to 1.")

}

if (theta < 0 | theta > 1) {
stop("`theta` must be between 0 and 1.")

}

ifelse((x %% 1 != 0) | (x < 1), 0, - (theta^x) / (x * log(1 - theta)))
}

In the above function, if any values of the x violate the flags (not being a whole number or not being
greater than or equal to one), then the function should return a value of zero in those positions, while
also displaying a warning to the user. This is to be consistent with the other distribution functions in
R. For valid values of x, we simply return the probability from the probability mass function. If the
value of theta supplied is outside of the valid bounds, then we return an error instead of a warning.

We can perform a quick test to check that our function works properly.
dlogseries(-1, theta=theta_mle)

## Warning in dlogseries(-1, theta = theta_mle): `x` contains values that are not
## greater than or equal to 1.

## [1] 0

dlogseries(2.3, theta=theta_mle)

## Warning in dlogseries(2.3, theta = theta_mle): `x` contains values that are not
## whole numbers.

## [1] 0

dlogseries(c(5, -2, 1.2, 2), theta=theta_mle)
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## Warning in dlogseries(c(5, -2, 1.2, 2), theta = theta_mle): `x` contains values
## that are not whole numbers.

## Warning in dlogseries(c(5, -2, 1.2, 2), theta = theta_mle): `x` contains values
## that are not greater than or equal to 1.

## [1] 0.03274584 0.00000000 0.00000000 0.20330202

On the topic of function writing, contrary to what may have been taught in other courses, the last line
of your function should never be a variable assignment. For debugging purposes, we always want our
function to return visible output in the console when called on its own. In addition, we should not use
explicit return() statements unless we break/exit out of our function earlier than expected, e.g. if we
violated one of the flags in the if statements and wanted an early exit out of the function.

In calculating our expected probabilities, note that we only pass the values from 1 through 6 into
our dlogseries() function. This is because the seventh group is a collapsed group and we want our
expected probabilities to sum to 1.
bacteria <- bacteria |>

transform(expected_prob = c(dlogseries(1:6, theta=theta_mle),
1 - sum(dlogseries(1:6, theta=theta_mle))))

bacteria

## number observed_count expected_prob
## 1 1 359 0.55062196
## 2 2 146 0.20330202
## 3 3 57 0.10008490
## 4 4 41 0.05543040
## 5 5 26 0.03274584
## 6 6 17 0.02015083
## 7 7 29 0.03766404

Now that we have the expected probabilities, we can obtain the expected counts by multiplying the
expected probabilities by the overall sample size.
bacteria <- bacteria |>

transform(expected_count = sum(observed_count) * expected_prob)

bacteria

## number observed_count expected_prob expected_count
## 1 1 359 0.55062196 371.66983
## 2 2 146 0.20330202 137.22886
## 3 3 57 0.10008490 67.55731
## 4 4 41 0.05543040 37.41552
## 5 5 26 0.03274584 22.10344
## 6 6 17 0.02015083 13.60181
## 7 7 29 0.03766404 25.42323

As mentioned in Tutorial 9 Question 3, we calculated expected counts rather than passing the observed
counts and expected probabilities into the chisq.test() function. This is because R does not know
that we made an additional estimate by estimating the MLE of 𝜃, thereby reducing our degrees of
freedom by one. As such, the degrees of freedom and 𝑝-value returned by the chisq.test() function
will be incorrect.
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However, as we are using software, the test statistic of the chi-square test is not difficult to compute.
statistic <- with(bacteria, sum((observed_count - expected_count)^2 / expected_count))

statistic

## [1] 5.024837

The degrees of freedom of our test statistic is 7 − 1 − 1 = 5 since we have seven categories, lose
one degree of freedom for estimating 𝜃, and lose one degree of freedom for the constraint that our
probabilities must sum to one. The 𝑝-value for this (upper-tailed) test is:
pchisq(statistic, df=7-1-1, lower.tail=FALSE)

## [1] 0.4128566

Since the 𝑝-value is not less than 0.05, we fail to reject the null hypothesis. As such, there is insufficient
evidence to support the claim that the data do not come from a logarithmic series distribution.
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