Tutorial 2

Question 1

(9.78) Let Y_1, Y_2, \dots, Y_n be a random sample from a power family distribution with parameters α and $\theta = 3$. Then for $\alpha > 0$,

$$f(y \mid \alpha) \, = \, \begin{cases} \frac{\alpha y^{\alpha - 1}}{3^{\alpha}}, & 0 \le y \le 3 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Show that $\mathbf{E}(Y_1) = 3\alpha/(\alpha+1)$.
- (b) Derive the method of moments estimator for α .

Question 2

(9.84) A certain type of electronic component has a lifetime Y (in hours) with probability density function given by:

$$f(y \mid \theta) \ = \begin{cases} \frac{1}{\theta^2} \, y e^{-y/\theta}, & y > 0 \\ 0, & \text{otherwise} \end{cases}$$

That is, Y has a gamma distribution with parameters $\alpha = 2$ and θ . Let $\hat{\theta}$ denote the MLE of θ . Suppose that three such components, tested independently, had lifetimes (in hours):

- (a) Find the MLE of θ and provide an estimate using the given data.
- (b) Find $\mathbf{E}(\hat{\theta})$ and $\mathbf{Var}(\hat{\theta})$. Is $\hat{\theta}$ an unbiased estimator of θ ?
- (c) What is the MLE for the variance of Y?

Question 3

Generate an observation from the binomial distribution with p = 0.4 and n = 40.

- (a) \mathbf{R} Find a 90% confidence interval for p, assuming that you did not know the true value of p.
- (b) \P Consider the interval from (a). Construct 200 such intervals based on a random sample of size m = 200 from the Binomial (n = 40, p = 0.4) distribution.
- (c) \mathbf{R} How many of your intervals contained the true value of p? Was this expected or unexpected?