
Tutorial 2 Solutions

Question 1
(9.78) Let 𝑌1, 𝑌2, … , 𝑌𝑛 be a random sample from a power family distribution with parameters 𝛼 and 𝜃 = 3.
Then for 𝛼 > 0,

𝑓(𝑦 | 𝛼) =
⎧{
⎨{⎩

𝛼𝑦𝛼−1

3𝛼 , 0 ≤ 𝑦 ≤ 3

0, otherwise

(a) Show that 𝐄 (𝑌1) = 3𝛼/(𝛼 + 1).

𝐄 (𝑌1) =
3

∫
0

𝑦 ⋅ 𝛼𝑦𝛼−1

3𝛼 𝑑𝑦

= 𝛼
3𝛼

3

∫
0

𝑦𝛼 𝑑𝑦

= 𝛼
3𝛼 ⋅ 1

𝛼 + 1 𝑦𝛼+1∣
𝑦=3

𝑦=0

= 𝛼
𝛼 + 1 ⋅ 3𝛼+1

3𝛼

= 3𝛼
𝛼 + 1

(b) Derive the method of moments estimator for 𝛼.

To find the method of moments estimator for 𝛼, we set the first population moment equal to the first
sample moment and solve for ̂𝛼. The first sample moment is given by:

1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖,

which is the sample average. As such, for the sake of readability, I will replace the above quantity with
𝑌 in the second step below.

𝐄 (𝑌1) = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖

3 ̂𝛼
̂𝛼 + 1 = 𝑌
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3 ̂𝛼 = 𝑌 ( ̂𝛼 + 1)

3 ̂𝛼 = 𝑌 ̂𝛼 + 𝑌

3 ̂𝛼 − 𝑌 ̂𝛼 = 𝑌

(3 − 𝑌 ) ̂𝛼 = 𝑌

̂𝛼 = 𝑌
3 − 𝑌

Question 2
(9.84) A certain type of electronic component has a lifetime 𝑌 (in hours) with probability density function
given by:

𝑓(𝑦 | 𝜃) =
⎧{
⎨{⎩

1
𝜃2 𝑦𝑒−𝑦/𝜃, 𝑦 > 0

0, otherwise

That is, 𝑌 has a gamma distribution with parameters 𝛼 = 2 and 𝜃. Let ̂𝜃 denote the MLE of 𝜃. Suppose
that three such components, tested independently, had lifetimes (in hours):

120 130 128.
(a) Find the MLE of 𝜃 and provide an estimate using the given data.

The likelihood function is given by:

ℒ(𝜃 | 𝐲) =
𝑛

∏
𝑖=1

𝑓(𝑦𝑖 | 𝜃)

= 1
𝜃2𝑛 (

𝑛
∏
𝑖=1

𝑦𝑖) exp {−
𝑛

∑
𝑖=1

𝑦𝑖/𝜃}

The log-likelihood function is given by:

ℓ(𝜃 | 𝐲) = log (ℒ(𝜃 | 𝐲))

= −2𝑛 log (𝜃) +
𝑛

∑
𝑖=1

log (𝑦𝑖) − 1
𝜃

𝑛
∑
𝑖=1

𝑦𝑖

The first and second derivatives of the log-likelihood function are:

𝑑
𝑑𝜃ℓ(𝜃 | 𝐲) = −2𝑛

𝜃 + 1
𝜃2

𝑛
∑
𝑖=1

𝑦𝑖

𝑑2

𝑑𝜃2 ℓ(𝜃 | 𝐲) = 2𝑛
𝜃2 − 2

𝜃3

𝑛
∑
𝑖=1

𝑦𝑖
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From first year calculus, recall that the extrema of a function occur when its first derivative equals
zero, i.e.

𝑑
𝑑𝜃ℓ(𝜃 | 𝐲)∣

𝜃= ̂𝜃
= 0

−2𝑛
̂𝜃

+ 1
̂𝜃2

𝑛
∑
𝑖=1

𝑦𝑖 = 0

−2𝑛 ̂𝜃 +
𝑛

∑
𝑖=1

𝑦𝑖 = 0

̂𝜃 = ∑𝑛
𝑖=1 𝑦𝑖
2𝑛

We should verify that ℓ( ̂𝜃 | 𝐲) is indeed a maximum.

𝑑2

𝑑𝜃2 ℓ(𝜃 | 𝐲)∣
𝜃= ̂𝜃

= 2𝑛

(∑𝑛
𝑖=1 𝑦𝑖
2𝑛 )

2 − 2

(∑𝑛
𝑖=1 𝑦𝑖
2𝑛 )

3

𝑛
∑
𝑖=1

𝑦𝑖

= (2𝑛)3

(∑𝑛
𝑖=1 𝑦𝑖)

2 − 2(2𝑛)3

(∑𝑛
𝑖=1 𝑦𝑖)

2

= − (2𝑛)3

(∑𝑛
𝑖=1 𝑦𝑖)

2

The above quantity is less than zero, so ̂𝜃 is indeed a maximum. Therefore,

̂𝜃 = ∑𝑛
𝑖=1 𝑌𝑖
2𝑛 = 𝑌

2
is a MLE for 𝜃.

Using the provided data, an estimate of 𝜃 is:

(120 + 130 + 128)/(2 ⋅ 3) = 63.

(b) Find E( ̂𝜃) and Var( ̂𝜃). Is ̂𝜃 an unbiased estimator of 𝜃?

Recall that if 𝑌𝑖 ∼ Gamma(𝛼 = 2, 𝜃), then

𝐄 (𝑌𝑖) = 2𝜃, 𝐕𝐚𝐫 (𝑌𝑖) = 2𝜃2.

𝐄( ̂𝜃) = 𝐄 (∑𝑛
𝑖=1 𝑌𝑖
2𝑛 )

= 1
2𝑛𝐄 (

𝑛
∑
𝑖=1

𝑌𝑖)

= 1
2𝑛

𝑛
∑
𝑖=1

𝐄 (𝑌𝑖)
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= 1
2𝑛 ⋅ 𝑛 ⋅ 2𝜃

= 𝜃

Since 𝐄( ̂𝜃) = 𝜃, ̂𝜃 is an unbiased estimator for 𝜃.

𝐕𝐚𝐫( ̂𝜃) = 𝐕𝐚𝐫 (∑𝑛
𝑖=1 𝑌𝑖
2𝑛 )

= 1
(2𝑛)2 𝐕𝐚𝐫 (

𝑛
∑
𝑖=1

𝑌𝑖)

= 1
(2𝑛)2

𝑛
∑
𝑖=1

𝐕𝐚𝐫 (𝑌𝑖)

= 1
(2𝑛)2 ⋅ 𝑛 ⋅ 2𝜃2

= 𝜃2

2𝑛
For a sample of size 3, we can simplify this to 𝜃2/6.

(c) What is the MLE for the variance of 𝑌 ?

As 𝑌 has a Gamma(𝛼 = 2, 𝜃) distribution, its variance is given by 2𝜃2, which is a function of 𝜃. By
the invariance property of maximum likelihood estimators, if ̂𝜃 is a maximum likelihood estimator for
𝜃, then 𝑔( ̂𝜃) is a maximum likelihood estimator for 𝑔(𝜃), where 𝑔(⋅) is a one-to-one function of 𝜃.

Thus, a maximum likelihood estimator for the variance of 𝑌 is given by:

𝑔( ̂𝜃) = 2 ̂𝜃2 = 2 (𝑌
2 )

2
= 𝑌 2

2 .

Question 3
Generate an observation from the binomial distribution with 𝑝 = 0.4 and 𝑛 = 40.

(a) Find a 90% confidence interval for 𝑝, assuming that you did not know the true value of 𝑝.

As usual, we should set our seed before beginning our simulation study. Once again, choose any number
you like.
set.seed(25)

I will store my observation in a variable called sample_values.
sample_values <- rbinom(n=1, size=40, prob=0.4)

sample_values

## [1] 15
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Note that the above gives the number of successes in a binomial experiment consisting of 40 trials. If
we want a proportion, we should divide it by the number of trials. This will be our ̂𝑝.
sample_values <- sample_values / 40

If we seek a 100(1 − 𝛼)% confidence interval for 𝑝 and do not know the true value of 𝑝, we can use the
formulation given on page 414 of the textbook, which uses ̂𝑝 instead:

̂𝑝 ± 𝑧𝛼/2 √ ̂𝑝(1 − ̂𝑝)
𝑛 ,

where 𝛼/2 is the area to the right of corresponding quantile.

Using our value of ̂𝑝 stored in the sample_values variable above, our confidence interval is computed
as:
alpha <- 0.10
zval <- qnorm(alpha/2, lower.tail=FALSE)

se_phat <- sqrt(sample_values * (1 - sample_values) / 40)

sample_values + c(-1, 1) * zval * se_phat

## [1] 0.2490921 0.5009079

We are 90% confident that the true value of 𝑝 lies between 0.25 and 0.5. In this instance, our interval
does in fact contain our true value of 𝑝 = 0.4.

(b) Consider the interval from (a). Construct 200 such intervals based on a random sample of size
𝑚 = 200 from the Binomial(𝑛 = 40, 𝑝 = 0.4) distribution.

We begin by re-setting our seed.
set.seed(69420)

We will take an approach similar to what was shown in question 3d of Tutorial 1. I first initialise a data
frame with a column called props to keep track of the generated proportions, obtained by generating
random deviates from the binomial distribution and scaling them by the number of trials.
q3b <- data.frame(props = rbinom(n=200, size=40, prob=0.4) / 40)

head(q3b)

## props
## 1 0.425
## 2 0.300
## 3 0.400
## 4 0.350
## 5 0.275
## 6 0.375

Note that the value of alpha and zval remain the same and can be reused from (a). The values that
will change are the ones stored in se_phat since these depend on the newly generated values of ̂𝑝. As in
question 3d of Tutorial 1, I will make use of the pipe (requires R 4.1+) and the transform() function.

Something to note is that the variable se_phat created in (a) exists in our global environment. In the
next step, we will be creating another se_phat. However, this one will be confined to the scope of its
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containing data frame.
q3b <- q3b |>

transform(se_phat = sqrt(props * (1 - props) / 40))

head(q3b)

## props se_phat
## 1 0.425 0.07816249
## 2 0.300 0.07245688
## 3 0.400 0.07745967
## 4 0.350 0.07541552
## 5 0.275 0.07060011
## 6 0.375 0.07654655

I briefly mentioned in the last tutorial that the transform() function has a limitation where we cannot
create new columns that depend on columns created in the same call. This means that since I have
just created the column se_phat in the above call to transform(), I cannot immediately construct the
lower and upper bounds of the corresponding confidence intervals in the same call since these values
require the values of se_phat. As such, we must make multiple calls to transform() to achieve our
desired result.

There are ways to get around this limitation through the use of other functions, but we likely won’t
get to them in this course.

Now that we have the values of se_phat in our data frame, we can call transform() to create our
lower and upper bounds, and once again to check which intervals contain our true value of 𝑝.
q3b <- q3b |>

transform(
lwr = props - zval * se_phat,
upr = props + zval * se_phat

) |>
transform(contained = (0.4 >= lwr) & (0.4 <= upr))

head(q3b)

## props se_phat lwr upr contained
## 1 0.425 0.07816249 0.2964341 0.5535659 TRUE
## 2 0.300 0.07245688 0.1808190 0.4191810 TRUE
## 3 0.400 0.07745967 0.2725902 0.5274098 TRUE
## 4 0.350 0.07541552 0.2259525 0.4740475 TRUE
## 5 0.275 0.07060011 0.1588732 0.3911268 FALSE
## 6 0.375 0.07654655 0.2490921 0.5009079 TRUE

(c) How many of your intervals contained the true value of 𝑝? Was this expected or unexpected?

The number of intervals that contained the true value of 𝑝 = 0.4 is:
sum(q3b$contained)

## [1] 177

We can also obtain the percentage of intervals that contained the true value of 𝑝 = 0.4.
mean(q3b$contained) * 100
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## [1] 88.5

88.5% of our intervals contained the true value of 𝑝 = 0.4. This value is reasonable. Recall that to say
we are 90% confident that our confidence interval (e.g. from (a)) contains the true value of 𝑝 means
that if we were to simulate new samples a sufficiently large number of times under identical conditions
and compute confidence intervals with these samples, 90% of these intervals would contain the true
value of 𝑝.

However, as this is a simulation and there is randomness involved, we shouldn’t expect to achieve
exactly 90%. Any value reasonably close to 90% (whether above or below) is fine. For example, a value
of 30% would not be fine.
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