Tutorial 6 Solutions

Question 1

(11.4) Auditors are often required to compare the audited (or current) value of an inventory item with the
book (or listed) value. If a company is keeping its inventory and books up to date, there should be a strong
linear relationship between the audit values and book values. A company sampled 10 inventory items and
obtained the values in the table below.

Item  Audit Value (y;) Book Value (x;)

1 9 10
2 14 12
3 7 9
4 29 27
5 45 47
6 109 112
7 40 36
8 238 241
9 60 59
10 170 167

(a) R Fit the model Y = 5, + S,z + ¢ to the data.

We begin by entering the data into R as a data frame. Recall that data frames in R are constructed
by calling the data.frame() function and supplying name-value pairs.

audit <- data.frame(
audit_value = c(9, 14, 7, 29, 45, 109, 40, 238, 60, 170),
book_value = c(16, 12, 9, 27, 47, 112, 36, 241, 59, 167)
)

We can build linear models in R using the 1m() function. Call ?1m in the console to pull up the
documentation! For basic linear models, we will be supplying two components to the 1m() function:
a formula of variables we want included in the model, and the name of the data set from which the
referenced variables exist.

In the most basic cases, a formula is constructed by supplying the dependent (response) variable,
followed by a tilde, followed by the independent (predictor) variables joined by plus signs.

Reading the problems that we are trying to solve in (b) and (c), we can deduce that the book value is
predictor and the audit value is the response. The linear model is constructed as follows:

audit_1m <- 1Im(audit_value ~ book_value, data=audit)

After fitting a model, we typically call the summary () function to inspect our model.

summary (audit_1m)

1HE

JHF Call:

jHt Im(formula = audit_value ~ book_value, data = audit)
1HE



jHE Residuals:

HE Min 1Q Median 30 Max
JHE -2.7557 -2.1477 -0.4228 1.4803 3.7178
HE

jHE Coefficients:

HE Estimate Std. Error t value Pr(>|t])

iHE (Intercept) 0.7198 1.1764 0.612 0.558

iHF book_value 0.9914 0.0114 86.994 3.4e-13 *x*x%x

JHE ---

JHE Signif. codes: 0 'xxx' 0.001 '¥x' 0.01 'x' ©0.05 '.' 0.1 ' ' 1

1HE

jHE Residual standard error: 2.666 on 8 degrees of freedom
jHF Multiple R-squared: 0.9989, Adjusted R-squared: 0.9988
jHt F-statistic: 7568 on 1 and 8 DF, p-value: 3.401e-13

The summary gives a lot of information that we don’t need at this point but will likely come back to
at a future date. We can obtain the predicted coefficients without any additional, unnecessary output
by wrapping our model with the coef() function, which will returned a named vector of the predicted
coeflicients.

coef(audit_1m)

iHE (Intercept) book_value
JHE 0.7198048  0.9913916

From the above, the equation of our fitted line is given by

Audit Value = 0.720 + 0.991 * Book Value

R What is your estimate for the expected change in audited value for a one-unit change in book value?

The estimate for the expected change in audited value for a one-unit change in book value is precisely
the value of ;. From the equation above, we expect a change of 0.991 units in audit value for a
one-unit change in book value.

R If the book value is x = 100, what would you use to estimate the audited value?

To estimate the audit value at a particular book value, we can simply plug the given book value into
our equation obtained in (a).

Caution: It is not recommended to predict y values for x values that are outside the range of the z
values in the data set. Doing so can lead to nonsensical results. As such, one should always check that
the provided value(s) of z fall inside the range of the x values used to fit the model.

We can obtain a prediction from a fitted linear model by passing our linear model into the predict()
function. The point(s) to be predicted upon should be supplied to the newdata argument and must
be a data frame containing columns with the same names as the predictors in the model.

predict(audit_1m, newdata=data.frame(book_value = 100))

HE 1
iHE 99.85896

For a book value of 100, we estimate the audited value to be 99.86.



Question 2

(11.14) J.H. Matis and T.E. Wehrly report the following table of data on the proportion of green sunfish
that survive a fixed level of thermal pollution for varying lengths of time.

(a)

Proportion of Survivors (y)  Scaled Time (x)

1.00 .10
95 15
95 .20
90 .25
.85 .30
.70 .35
.65 40
.60 45
.55 .50
40 .55

R Fit the linear model Y = 3, + B,z + €. Give your interpretation.
We first enter the data into R.

sunfish <- data.frame(
prop_survivors = c(1.00, 0.95, 0.95, 0.90, 0.85, 0.70, 0.65, 0.60, 0.55, 0.40),
scaled_time = ¢(0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55)

)

We can then fit the model, taking the same steps as before.

sunfish_1lm <- Im(prop_survivors ~ scaled_time, data=sunfish)

coef(sunfish_1m)

jHE (Intercept) scaled_time
HE 1.182424 -1.315152

The equation of the fitted line is given by:

Proportion of Survivors = 1.182 — 1.315  Scaled Time.

This says that for a unit increase in scaled time, we should expect a decrease in the proportion of
survivors by 1.315 units. However, since the response variable is a proportion and as such, should be
a value between 0 and 1, we really should never see an increase in scaled time by an entire unit.

R Plot the points and graph the result of part (a). Does the line fit through the points?

I will be using the ggplot2 package for plotting rather than the plotting methods that exist in base-R.
To install the ggplot2 package, in the console, type:

install.packages("ggplot2")

If ggplot2 is already installed, we can load it by calling (in our script):
library(ggplot2)

Note: Packages need to be reloaded each time you start a new R session!

The construction of plots via ggplot2 is done through the addition of layers upon layers.



We start by initializing a blank canvas. For linear models, this is done by calling the ggplot () function

(note that the package is called ggplot2 but the function is called ggplot()) and passing in our linear
model.

ggplot(sunfish_1m)

Next, we add our data points to our blank canvas as a new layer. This is done by joining our
canvas with the geom_point() function by a plus symbol. Within the geom_point() function, we also
specify aes(x=scaled_time, y=prop_survivors) to indicate the that we want the points to be plotted
according to the values found under the respective variables.
ggplot(sunfish_1m) +

geom_point(aes(x=scaled_time, y=prop_survivors))
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Finally, we add our fitted line to the plot as another layer. This is done by adding a geom_line() layer
to our previous plot, once again using a plus symbol. Inside the geom_line() function, we also specify
aes(x=scaled_time, y=.fitted) as the predicted line is constructed by passing each predictor value
through our model to obtain predicted response values, and then joining these points together.

Outside of the aes(), I will also specify colour="#3366FF" (self-explanatory), size=1.5 (self-
explanatory), and alpha=0.6 to add some transparency to the line.

ggplot(sunfish_1m) +
geom_point(aes(x=scaled_time, y=prop_survivors)) +
geom_line(aes(x=scaled_time, y=.fitted), colour="#3366FF", size=1.5, alpha=0.6)
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Note that since both the points layer and line layer shared a common x-variable, it would have been
equivalent to supply a x-aesthetic in the declaration of the canvas, which would be inherited by all
future layers. You can try running the code below and you will notice that the output is identical:

ggplot(sunfish_1m, aes(x=scaled_time)) +
geom_point(aes(y=prop_survivors)) +
geom_line(aes(y=.fitted), colour="#3366FF", size=1.5, alpha=0.6)

Returning to the question, the line provides a reasonable fit for the data. Notice that our fitted line
does not actually pass through any of the data points. However, it is not a requirement that our fitted
line should pass through any of our data points for it to be a good fit.

Recall that the method of least squares finds a line that minimizes the sum of the squared distance
between all points and the fitted line. This does not guarantee that our fitted line will pass through
all (or any) given data points. It is a common misconception that the least squares line should pass
through every point in the data set for it to be a good fit. Looking at the plot above, it would be
impossible to find a single straight line that could pass through all of our data points!

Question 3

Suppose that eight specimens of a certain type of alloy were produced at different temperatures, and the
durability of each speciment was then observed. The observed values are given in the table below, where
x,; denotes the temperature (in coded units) at which which specimen i was produced, and y; denotes the
durability (in coded units) of that specimen.



.

Durability (y;) Temperature (z;)

1 40 0.5
2 41 1.0
3 43 1.5
4 42 2.0
5) 44 2.5
6 42 3.0
7 43 3.5
8 42 4.0

Let’s initialize the data first!

alloy <- data.frame(
durability = c(40, 41, 43, 42, 44, 42, 43, 42),
temperature = c(0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0)
)

(a) Fit the straight line model Y = 5, + f;z + ¢ using the method of least squares.

From class, it was shown that the minimization of the function

Q(By, B1) = Z(yi — By — Brz;)?
i—1
yielded the following solutions for estimates of 3; and S;:
=~ {L‘Z i - TZZL‘i =~ _ =~
b= ZIUT g g fw

S a2 —nz”

From the data provided, it can be found that:
e n=2_8
e T = 2.25
e Yy = 42.125
o Dy, = T64
o Y22 =51

Plugging these values into the equations for our estimates above, we obtain that

3, = 0.548,  f, = 40.893.

Therefore the equation of the fitted line is:

Dur/a_b\ility = 40.893 + 0.548 * Temperature.

We can verify these results in R.



alloy_1lml <- Im(durability ~ temperature, data=alloy)

coef(alloy_1ml)

jHE (Intexcept) temperature
HE  40.892857 0.547619

Fit the parabola model Y = 3, + By + B52? + € using the method of least squares.

In class, it was shown that the normal equations in the case of fitting a parabola are:

71504‘/812% —1—5221'12 = Zyi
ﬁoz$i+512$?+522$? = szyz
502%2 + 512@)’ + 52251”;1 = Zl"?yz

For the given data, the normal equations take the form:

88, + 1883, + 5183, = 337
188, + 518, + 1628, = 764
518, + 1628, + 548.258, = 2167.5

We can solve this system of linear equations as follows:

X <- matrix(
c(8, 18, 51, 18, 51, 162, 51, 162, 548.25),
nrow=3, ncol=3, byrow=TRUE

)

Y <- matrix(c(337, 764, 2167.5))
solve(X, Y)

JHF [,1]

JHE [1,] 38.4821429

#HE [2,] 3.4404762
JHE [3,] -0.6428571

Our parameter estimates are as follows:

B, = 38.482, (3, = 3.440, B, = —0.643.

Therefore, the equation of the parabola obtained by least squares is:

Duﬁleity = 38.482 + 3.440 % Temperature — 0.643 Temperature2



Note that the solve() function in R has two uses. If we supply one matrix to solve(), it computes
the matrix inverse (if it exists). If we supply two matrices, X and Y, to solve(), it solves the system
XB =Y, for B.

There are a few ways that we can go about fitting this model in R. My approach will involve creating
an extra column in my data set for the square of the temperature and then passing this new data set
to Im().

alloy <- alloy [>
transform(temperature_sq = temperature”2)

alloy_1lm2 <- Im(durability ~ temperature + temperature_sq, data=alloy)

coef(alloy_1m2)

it (Intercept) temperature temperature_sq
1kt 38.4821429 3.4404762 -0.6428571

R Sketch on the same graph the eight data points and their predicted values according to the two
different models.

To construct our plot, I will take the newest alloy data set, as it contains the degree 1 and degree 2
temperature values, and augment it to conain the fitted values from the straight line model and the
parabola model. To obtain the predictions from each model, we can pass the model to the predict()
function. When using predict() without supplying a value to the newdata argument, it returns the
predictions using the predictor values found in the original data. Since predict() returns a vector, we
can create new columns in our data set via transform().

To augment our data set, we can use the following code:

alloy_augment <- alloy |>
transform(

fitted_1ml

fitted_1m2

predict(alloy_1ml),
predict(alloy_1m2)

alloy_augment

jHF durability temperature temperature_sq .fitted_1ml .fitted_1m2

HE 1 40 0.5 0.25 41.16667 40.04167
iHE 2 41 1.0 1.00 41.44048 41.27976
iHE 3 43 1.5 2.25 41.71429 42.19643
HE 4 42 2.0 4.00 41.98810 42.79167
iHE 5 44 2.5 6.25 42.26190 43.06548
HE 6 42 3.0 9.00 42 .53571 43.01786
HE 7 43 3.5 12.25 42.80952 42 .64881
iHE 8 42 4.0 16.00 43.08333 41.95833

We can sketch the required graph in ggplot2 using the following code:

(Try running the code line by line to see how the plot is constructed by the overlaying of individual
layers!)
ggplot(alloy_augment, aes(x=temperature)) +

geom_point(aes(y=durability)) +

geom_line(aes(y=.fitted_1ml, colour="Linear"), size=1.5, alpha=0.6) +



geom_line(aes(y=.fitted_1m2, colour="Quadratic"), size=1.5, alpha=0.6)
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Note that in the above example, we supply a string to the colour aesthetic in the geom_line() layers.
This essentially tags the points on the respective lines such that points with different tags will be
coloured differently.

We can get a bit fancier by applying a custom colour scale layer. In the call to this custom colour scale
layer, we supply a name to the colour scale (which will show up in the legend), a vector of colours, and
optionally (not shown here) a vector of the order of the groupings to appear in the legend, supplied to
the breaks argument (note that groups are ordered alphabetically by default).

I will also use labs() to adjust the axis titles — I like my axis titles to begin with a capital letter.

ggplot(alloy_augment, aes(x=temperature)) +
geom_point(aes(y=durability)) +
geom_line(aes(y=.fitted_1ml, colour="Linear"), size=1.5, alpha=0.6) +
geom_line(aes(y=.fitted_1m2, colour="Quadratic"), size=1.5, alpha=0.6) +
scale_colour_manual (name="Model Type", values=c("#0072B2","#D55E00")) +
labs(x="Temperature", y="Durability")
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From the plot above, it appears that there is a quadratic trend in the points. As such, the quadratic
fit does a better job at capturing the overall trend in the data.
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