
Tutorial 7 Solutions

Question 1
(11.15) Derive the following identity:

SSE =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 = 𝑆𝑦𝑦 − ̂𝛽1𝑆𝑥𝑦

SSE =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

=
𝑛

∑
𝑖=1

(𝑦𝑖 − ( ̂𝛽0 + ̂𝛽1𝑥𝑖))2

=
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝛽0 − ̂𝛽1𝑥𝑖)2

=
𝑛

∑
𝑖=1

(𝑦𝑖 − (𝑦 − ̂𝛽1𝑥) − ̂𝛽1𝑥𝑖)2

=
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑦 + ̂𝛽1𝑥 − ̂𝛽1𝑥𝑖)2

=
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑦 − ̂𝛽1(𝑥𝑖 − 𝑥))2

=
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑦)2 − 2 ̂𝛽1
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑦)(𝑥𝑖 − 𝑥) + ̂𝛽2
1

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥)2

= 𝑆𝑦𝑦 − 2𝑆𝑥𝑦
𝑆𝑥𝑥

𝑆𝑥𝑦 + 𝑆𝑥𝑦
2

𝑆𝑥𝑥
2 𝑆𝑥𝑥

= 𝑆𝑦𝑦 − 2𝑆𝑥𝑦
2

𝑆𝑥𝑥
+ 𝑆𝑥𝑦

2

𝑆𝑥𝑥

= 𝑆𝑦𝑦 − 𝑆𝑥𝑦
2

𝑆𝑥𝑥

= 𝑆𝑦𝑦 − ̂𝛽1𝑆𝑥𝑦
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For questions 2 and 3, we will be making plots via ggplot2. In preparation for this, I will load the package
here.
library(ggplot2)

Question 2
(11.5/11.17a/11.32) The median sale prices for new single family houses are given in the table below for the
years 1972 through 1979.

Year Median Sale Price (Thousands, 𝑦) Year Index (𝑥)
1972 27.6 1
1973 32.5 2
1974 35.9 3
1975 39.3 4
1976 44.2 5
1977 48.8 6
1978 55.7 7
1979 62.9 8

(a) Letting 𝑌 denote the median sales price and 𝑥 the year (using integers 1, 2, …, 8), fit the model
𝑌 = 𝛽0 + 𝛽1𝑥 + 𝜀.

We begin by calculating some summary quantities.

𝑥 = 4.5, ∑ 𝑥2
𝑖 = 204, 𝑦 = 43.3625, ∑ 𝑦2

𝑖 = 16045.29, ∑ 𝑥𝑖𝑦𝑖 = 1764.4, 𝑛 = 8

Our least squares estimates are found as:

̂𝛽1 = 𝑆𝑥𝑦
𝑆𝑥𝑥

= ∑ 𝑥𝑖𝑦𝑖 − 𝑛𝑥𝑦
∑ 𝑥2

𝑖 − 𝑛𝑥2 = 1764.4 − 8(4.5)(43.3625)
204 − 8(4.5)2 = 4.8417

̂𝛽0 = 𝑦 − ̂𝛽1𝑥 = 43.3625 − 4.84167(4.5) = 21.5750

The equation of our fitted line is given by:

̂Median Sales Price = 21.5750 + 4.8417 ∗ Year Index

(b) Calculate SSE and 𝑆2.

The calculation of all the ̂𝑦𝑖 values are obtained by plugging in each 𝑥𝑖 value into the fitted equation
obtained in (a). However, this is a tedious task and is something that we don’t want to do if we are
approaching this problem by hand. To calculate the SSE, we can use the result obtained in Question
1.

SSE = 𝑆𝑦𝑦 − ̂𝛽1𝑆𝑥𝑦
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= (∑ 𝑦2
𝑖 − 𝑛𝑦2) − ̂𝛽1

∑ 𝑥𝑖𝑦𝑖 − 𝑛𝑥𝑦
∑ 𝑥2

𝑖 − 𝑛𝑥2

= (16045.29 − 8(43.3625)2) − 4.8417 1764.4 − 8(4.5)(43.3625)
204 − 8(4.5)2

= 18.2858

To calculate 𝑆2, we use the following formula:

𝑆2 = SSE
𝑛 − (𝑝 + 1),

where 𝑝 + 1 is the number of coefficients in the model (including the intercept). In the case of simple
linear regression with an intercept, 𝑝 = 1, and so 𝑝 + 1 is always equal to 2. As such, we have

𝑆2 = SSE
𝑛 − 2.

Plugging in our value obtained for SSE, we have

𝑆2 = 18.2858
8 − 2 = 3.0476

(c) Is there sufficient evidence to indicate that the median sales price for new single family houses increased
over the period from 1972 through 1979? Use 𝛼 = 0.01.

The hypotheses we wish to test are:

𝐻0 ∶ 𝛽1 ≤ 0 vs 𝐻1 ∶ 𝛽1 > 0.

Our test statistic is of the form

𝑇 =
̂𝛽1 − 𝛽1,0
se( ̂𝛽1)

=
̂𝛽1 − 0

√ 𝑆2
𝑆𝑥𝑥

∼ 𝑡𝑛−(𝑝+1).

As in (b), in the case of simple linear regression with an intercept, 𝑝 = 1, so that 𝑝 + 1 = 2, so the
above statistic has a 𝑡-distribution on 𝑛 − 2 degrees of freedom. Plugging in the required values:

𝑡 = 4.8417 − 0
√ 3.0476

204−8(4.5)2

= 17.97.

The 𝑝-value of this upper-tailed test is:
pt(17.97, df=8-2, lower.tail=FALSE)

## [1] 9.549767e-07

Since the 𝑝-value is less than 𝛼 = 0.01, we reject the null hypothesis. We conclude that the median
sales price of new single family houses has increased over the period of 1972 to 1979.
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(d) Estimate the expected yearly increase in median sale price by constructing a 99% confidence interval.

The 99% confidence interval for 𝛽1 is given by:

̂𝛽1 ± 𝑡𝑛−(𝑝+1), 0.01/2 √ 𝑆2

𝑆𝑥𝑥
,

again with 𝑝 + 1 = 2. Plugging in the required values, we obtain the interval [3.8430, 5.8404].
We conclude with 99% confidence that the expected yearly increase in median sales price of new single
family houses over the period of 1972 and 1979 is between 3.8430 and 5.8404 (×1000) dollars.

(e) Repeat parts (a) - (d) using R. After fitting the model in (a), create a plot of the residuals against
the year index.

We begin by reading the data into R.
houses <- data.frame(

sale_price = c(27.6, 32.5, 35.9, 39.3, 44.2, 48.8, 55.7, 62.9),
year_index = 1:8

)

The linear model is fitted as usual.
houses_lm <- lm(sale_price ~ year_index, data=houses)

coef(houses_lm)

## (Intercept) year_index
## 21.575000 4.841667

In last week’s tutorial, I briefly mentioned that while ggplot() always requires a data frame to be
supplied to its first argument, if a linear model is supplied, it will call ggplot2::fortify.lm() under
the hood to convert the linear model into a data frame. This data frame that is constructed behind
the scenes contains a column called .resid which contains the residuals. The plot of the residuals
against the year index can be constructed using the following code:
ggplot(houses_lm, aes(x=year_index, y=.resid)) +

geom_point() +
labs(x="Year Index", y="Residuals")

4



−2

−1

0

1

2

2 4 6 8
Year Index

R
es

id
ua

ls

We can calculate the SSE using the direct method since we can easily obtain all the fitted values of
the model using software.
SSE <- sum((houses$sale_price - predict(houses_lm))^2)

SSE

## [1] 18.28583

𝑆2 can be obtained by dividing the SSE by its degrees of freedom, 𝑛 − (𝑝 + 1) = 𝑛 − 2 = 6.
S_sq <- SSE / 6

S_sq

## [1] 3.047639

Note that if we called the model summary, near the bottom, a value called Residual standard error
is given with its degrees of freedom.
summary(houses_lm)

##
## Call:
## lm(formula = sale_price ~ year_index, data = houses)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.82500 -1.59792 0.01667 1.19792 2.59167
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21.5750 1.3603 15.86 3.99e-06 ***
## year_index 4.8417 0.2694 17.97 1.91e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.746 on 6 degrees of freedom
## Multiple R-squared: 0.9818, Adjusted R-squared: 0.9787
## F-statistic: 323.1 on 1 and 6 DF, p-value: 1.908e-06

This residual standard error is in fact 𝑆. As such, if we take the square root of the value we obtained
for 𝑆2, we should get the same value displayed for the residual standard error. However, I don’t
recommend reading this value off the summary and using it for further calculations as there is a bit
of rounding so that the numbers print nicely. As such, your calculations will be more precise if you
calculate 𝑆2 yourself. In fact, under the hood, R calculates this value of 𝑆2 as I have shown above,
before square rooting it to return the value of 𝑆.

To perform the hypothesis test of (c), we can return to the model summary again and look under
the t value column of the coefficient table for the row year_index. Recall that the value of the test
statistic is the same whether it is an upper-tailed, lower-tailed, or two-tailed hypothesis test. However,
we cannot use the 𝑝-value included in the table as this corresponds to the two-tailed test of

𝐻0 ∶ 𝛽𝑖 = 0 vs 𝐻1 ∶ 𝛽𝑖 ≠ 0.

As such, for our upper tailed test, we must find the 𝑝-value manually by taking the given value of
the test statistic and the degrees of freedom of the residual sum of squares (which is the same as the
degrees of freedom of our test statistic).
pt(17.97, df=6, lower.tail=FALSE)

## [1] 9.549767e-07

As the 𝑝-value of this test is less than 𝛼 = 0.01, we reject the null hypothesis in favour of the alternative
and make the same concluding remarks as before.

To obtain confidence intervals for the model coefficients, we can simply wrap our model in the confint()
function. Note that by default, confint() returns 95% confidence intervals. If we seek a 99% confidence
interval, we also need to specify level=0.99.
confint(houses_lm, level=0.99)

## 0.5 % 99.5 %
## (Intercept) 16.531873 26.618127
## year_index 3.842979 5.840355

Our interval is given by [3.8430, 5.8404] and we make the appropriate concluding remarks as above.

Question 3
(11.16/11.39/11.46) An experiment was conducted to observe the effect of an increase in temperature on the
potency of an antibiotic. Three 1-ounce portions of the antibiotic were stored for equal lengths of time at
various Fahrenheit temperatures.
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Potency Reading (𝑦) Temperature (𝑥)
38 30
43 30
29 30
32 50
26 50
33 50
19 70
27 70
23 70
14 90
19 90
21 90

(a) Find the least-squares line appropriate for this data.

We begin by calculating some summary quantities.

𝑥 = 60, ∑ 𝑥2
𝑖 = 49200, 𝑦 = 27, ∑ 𝑦2

𝑖 = 9540, ∑ 𝑥𝑖𝑦𝑖 = 17540, 𝑛 = 12

Our least squares estimates are found as:

̂𝛽1 = 𝑆𝑥𝑦
𝑆𝑥𝑥

= ∑ 𝑥𝑖𝑦𝑖 − 𝑛𝑥𝑦
∑ 𝑥2

𝑖 − 𝑛𝑥2 = 17540 − 12(60)(27)
49200 − 12(60)2 = −0.3167

̂𝛽0 = 𝑦 − ̂𝛽1𝑥 = 27 − (−0.3167)(60) = 46.0000

The equation of our fitted line is given by:

̂Potency = 46.0000 − 0.3167 ∗ Temperature

(b) Calculate 𝑆2.

We start by calculating the SSE using the result from Question 1.

SSE = 𝑆𝑦𝑦 − ̂𝛽1𝑆𝑥𝑦

= (∑ 𝑦2
𝑖 − 𝑛𝑦2) − ̂𝛽1

∑ 𝑥𝑖𝑦𝑖 − 𝑛𝑥𝑦
∑ 𝑥2

𝑖 − 𝑛𝑥2

= (9540 − 12(27)2) − (−0.3167) 17540 − 12(60)(27)
49200 − 12(60)2

= 190.3333

As before, in the case of simple linear regression with an intercept, the formula for 𝑆2 reduces to:
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𝑆2 = SSE
𝑛 − 2.

Plugging in our value obtained for SSE, we have

𝑆2 = 190.3333
12 − 2 = 19.0333

(c) Find a 95% confidence interval for the mean potency of a 1-ounce portion of antibiotic stored at 65∘

F.

In the setting of a simple linear regression model with an intercept, the formula for a 95% confidence
interval for the mean response at a particular value of the predictor is given by:

̂𝑦∗ ± 𝑡𝑛−2, 0.05/2 √𝑆2 ( 1
𝑛 + (𝑥∗ − 𝑥)2

𝑆𝑥𝑥
),

where ̂𝑦∗ = ̂𝛽0 + ̂𝛽1𝑥∗, and the degrees of freedom of the critical value arises from the degrees of
freedom of the SSE. Plugging in the required values, we obtain the interval [22.5412, 28.2921].
We conclude with 95% confidence that for a 1-ounce portion of antibiotic stored at 65∘ F, the mean
potency is between 22.5412 and 28.2921.

(d) Find a 95% prediction interval for the potency of a 1-ounce portion of antibiotic stored at 65∘ F. How
does this interval compare to the interval found in (c)?

In the setting of a simple linear regression model with an intercept, the formula for a 95% prediction
interval for the response at a particular value of the predictor is given by:

̂𝑦∗ ± 𝑡𝑛−2, 0.05/2 √𝑆2 (1 + 1
𝑛 + (𝑥∗ − 𝑥)2

𝑆𝑥𝑥
),

where ̂𝑦∗ = ̂𝛽0 + ̂𝛽1𝑥∗, and the degrees of freedom of the critical value arises from the degrees of
freedom of the SSE. Plugging in the required values, we obtain the interval [15.2796, 35.5538].
We conclude with 95% confidence that for a 1-ounce portion of antibiotic stored at 65∘ F, the potency
is between 15.2796 and 35.5538.

Comparing this interval to the interval found in (c), we notice that it is much wider. This is due to
the presence of the extra term under the square root of the standard error of our prediction.

(e) Repeat parts (a) - (d) using R. After fitting the model in (a), create a plot of the data points and
the fitted line to verfiy that the fit is appropriate.

We begin by reading the data into R.
antibiotic <- data.frame(

potency = c(38, 43, 29, 32, 26, 33, 19, 27, 23, 14, 19, 21),
temperature = rep(c(30, 50, 70, 90), each=3)

)

The linear model is fitted as usual.
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antibiotic_lm <- lm(potency ~ temperature, data=antibiotic)

coef(antibiotic_lm)

## (Intercept) temperature
## 46.0000000 -0.3166667

We can use the code below to create a plot of the data points with the fitted line.
ggplot(antibiotic_lm, aes(x=temperature)) +

geom_point(aes(y=potency)) +
geom_line(aes(y=.fitted), colour="#3366FF", size=1.5, alpha=0.6) +
labs(x="Temperature", y="Potency")
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The fit seems appropriate as it is able to capture the overall trend of our data.

To calculate 𝑆2, we begin by calculating the SSE.
SSE <- sum((antibiotic$potency - predict(antibiotic_lm))^2)

SSE

## [1] 190.3333

To obtain 𝑆2, we divide the SSE by its degrees of freedom. In the setting of simple linear regression
with an intercept, this is 𝑛 − 2 = 12 − 2 = 10.
S_sq <- SSE / 10

S_sq

9



## [1] 19.03333

We can double check our calculation by taking the square root and comparing it to the value shown
in the model summary next to Residual standard error.
summary(antibiotic_lm)

##
## Call:
## lm(formula = potency ~ temperature, data = antibiotic)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.500 -3.667 1.500 2.917 6.500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 46.00000 3.60640 12.755 1.64e-07 ***
## temperature -0.31667 0.05632 -5.622 0.000221 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.363 on 10 degrees of freedom
## Multiple R-squared: 0.7597, Adjusted R-squared: 0.7356
## F-statistic: 31.61 on 1 and 10 DF, p-value: 0.0002207

sqrt(S_sq)

## [1] 4.362721

In addition to returning single point estimates from our model, the predict() function is also able to
produce confidence intervals and prediction intervals. To see the documentation for predictions with
linear models, call ?predict.lm in the console.

To compute a 95% confidence interval for the mean potency when temperature is 65∘ F, we predict at a
point as usual by supplying a data frame that contains columns with the same names as the predictors
in the model, while also specifying interval="confidence".
predict(antibiotic_lm, newdata=data.frame(temperature = 65), interval="confidence")

## fit lwr upr
## 1 25.41667 22.54123 28.2921

Unsurprisingly, to make a prediction interval, we instead specify interval="prediction".
predict(antibiotic_lm, newdata=data.frame(temperature = 65), interval="prediction")

## fit lwr upr
## 1 25.41667 15.27955 35.55378

From the documentation, we should note that the confidence level has a default value of 0.95. As such,
if we required a 99% confidence/prediction interval, we would also pass in level=0.99, as demonstrated
below.
predict(

antibiotic_lm,
newdata = data.frame(temperature = 65),
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interval = "prediction",
level = 0.99

)

## fit lwr upr
## 1 25.41667 10.99778 39.83555
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