
Tutorial 9 Solutions

Question 1
(14.2) Previous enrolment records at a large university indicate that of the total number of persons who
apply for admission, 60% are admitted unconditionally, 5% are conditionally admitted, and the remainder
are refused admission. Of 500 applicants to date for next year, 329 were admitted unconditionally, 43
were conditionally admitted, and the remainder were not admitted. Do the data indicate a departure from
previous admission rates?

(a) Carry out the test using 𝛼 = 0.05.

If we let the subscripts 1 represent unconditional admission, 2 represent conditional admission, and 3
represent refusal, the hypotheses we are interested in testing are:

𝐻0 ∶ 𝑝1 = 0.60, 𝑝2 = 0.05, 𝑝3 = 0.35 vs 𝐻1 ∶ At least one 𝑝𝑖 ≠ 𝑝𝑖, 0.

The observed and expected counts are as follows:

Unconditional Conditional Refused
admission admission

Observed 329 43 128
Expected 500(0.6) = 300 500(0.05) = 25 500(0.35) = 175

The test statistic is:

𝑉 =
𝑘

∑
𝑖=1

(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

approx∼ 𝜒2
𝑘−1,

where 𝑂𝑖 is the observed frequencies, 𝐸𝑖 is the expected frequencies (under 𝐻0), and 𝑘 is the number
of categories. The degrees of freedom 𝑘 − 1 arises from the restriction that ∑𝑘

𝑖=1 𝑝𝑖 = 1. Plugging in
the values from the table, the value of our test statistic is:

𝑣 = (329 − 300)2

300 + (43 − 25)2

25 + (128 − 175)2

175 = 28.386,

on 3 − 1 = 2 degrees of freedom. As this is always an upper-tailed test, we reject 𝐻0 if 𝑉 > 𝜒2
𝑘−1, 𝛼.

qchisq(0.05, df=3-1, lower.tail=FALSE)

## [1] 5.991465

Since 28.386 > 5.991, we reject the null hypothesis in favour of the alternative. We conclude that there
is evidence to support the claim that current admission rates differ from previous admission rates.
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(b) Find the 𝑝-value associated with the test in (a).

The (approximate) 𝑝-value is found as:
pchisq(28.386, df=3-1, lower.tail=FALSE)

## [1] 6.855804e-07

Since 6.856 × 10−7 < 0.05, we reject the null hypothesis once again and make the same conclusions as
in (a).

Question 2
(14.8) The Mendelian theory states that the number of a type of peas that fall into the classifications:

• Round and yellow
• Wrinkled and yellow
• Round and green
• Wrinkled and green

should be in the ratio of 9:3:3:1. Suppose that 100 such peas revealed 56, 19, 17, and 8 in the respective
categories. Are the data consistent with the model? Use 𝛼 = 0.05. (Note: the expression 9:3:3:1 means that
9/16 of the peas should be round and yellow, 3/16 should be wrinkled and yellow, etc.)

Let R denote round, Y denote yellow, W denote wrinkled, and G denote green. The hypotheses we are
interested in testing are:

𝐻0 ∶ Ratio is 9:3:3:1 vs 𝐻1 ∶ 𝐻0 untrue,

or equivalently,

𝐻0 ∶ 𝑝RY = 9/16, 𝑝WY = 3/16, 𝑝RG = 3/16, 𝑝WG = 1/16 vs 𝐻1 ∶ At least one 𝑝𝑖 ≠ 𝑝𝑖, 0.

We carry out this test using the chisq.test() function in R.
observed_peas <- c(56, 19, 17, 8)
expected_probabilities <- c(9/16, 3/16, 3/16, 1/16)

chisq.test(observed_peas, p=expected_probabilities)

##
## Chi-squared test for given probabilities
##
## data: observed_peas
## X-squared = 0.65778, df = 3, p-value = 0.8831

From the output above, the 𝑝-value is given as 0.8831. Since 0.8831 > 0.05, we fail to reject the null
hypothesis. We conclude that there is insufficient evidence to support the claim that the 9:3:3:1 ratio does
not hold.

Question 3
(14.12) The numbers of accidents experienced by machinists were observed for a fixed period of time, with
the results as shown in the table below. Test at the 5% significance level that the data come from a Poisson
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distribution.

Accidents per machinist Frequency of observation
(number of machinists)

0 296
1 74
2 26
3 8
4 4
5 4
6 1
7 0
8 1

Let 𝑌 be the number of accidents experienced by machinists. The hypotheses we wish to test are:

𝐻0 ∶ 𝑌 ∼ Poisson(𝜆) vs 𝐻1 ∶ 𝑌 is not Poisson(𝜆).

We begin by entering our data.
accidents <- data.frame(
number = 0:8,
observed_count = c(296, 74, 26, 8, 4, 4, 1, 0, 1)

)

We must make an estimate of 𝜆. We recall that the MLE of 𝜆 was given by 𝜆̂ = 𝑌 . In the setting of
tabulated count data,

𝑌 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖 = 1
𝑛

𝑘
∑
𝑗=1

𝑌𝑗 ⋅ 𝑛𝑦𝑗
,

i.e. the sum can be obtained by multiplying the group values by their group counts and summing those
values together. We calculate 𝜆̂ as follows:
lambda_hat <- with(accidents, (1 / sum(observed_count)) * sum(number * observed_count))

lambda_hat

## [1] 0.4830918

In the above, I wrap my calculations using the with() function so that I do not need to keep typing
accidents$column to access the columns. Next, we create a column for the expected counts. The expected
counts are calculated as:

Ê(𝑛𝑖) = 𝑛 ̂𝑝𝑖 = 414 ⋅ 𝜆̂𝑦𝑖 𝑒−𝜆̂

𝑦𝑖!

We use dpois() to obtain our Poisson values (d for density, though technically, this is a discrete distribution
so it is mass).
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accidents <- accidents |>
transform(expected_count = sum(observed_count) * dpois(number, lambda=lambda_hat))

accidents

## number observed_count expected_count
## 1 0 296 2.553855e+02
## 2 1 74 1.233746e+02
## 3 2 26 2.980064e+01
## 4 3 8 4.798814e+00
## 5 4 4 5.795670e-01
## 6 5 4 5.599681e-02
## 7 6 1 4.508600e-03
## 8 7 0 3.111525e-04
## 9 8 1 1.878940e-05

We notice that for 𝑌 ≥ 3, the expected counts drops below 5. As stated on page 715 of the textbook, a
rule of thumb is given that we should aim for expected cell counts to be at least five (though they can be as
low as one). As such, we should collapse all rows for 𝑌 ≥ 3 to be represented by 𝑌 = 3 by summing their
expected counts together.

We can do this by first changing the values under the number column – if the number is greater or equal to
three, we change the value to three, otherwise it remains the same. Then we convert it to a factor.
accidents <- accidents |>
transform(number = ifelse(number >= 3, 3, number)) |>
transform(number = as.factor(number))

accidents

## number observed_count expected_count
## 1 0 296 2.553855e+02
## 2 1 74 1.233746e+02
## 3 2 26 2.980064e+01
## 4 3 8 4.798814e+00
## 5 3 4 5.795670e-01
## 6 3 4 5.599681e-02
## 7 3 1 4.508600e-03
## 8 3 0 3.111525e-04
## 9 3 1 1.878940e-05

Next, we collapse all rows that have the same value of number by taking the sums of the values of the other
columns. Note that the first three rows of the data will remain unchanged after taking their group column
sums since they only have one row for each group.
accidents <- aggregate(. ~ number, data=accidents, sum)

accidents

## number observed_count expected_count
## 1 0 296 255.385505
## 2 1 74 123.374640
## 3 2 26 29.800638
## 4 3 18 5.439217
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We will not use the chisq.test() function for this question. While the resulting value of the test statistic
will be correct, R does not know that we made an additional estimate (the MLE for 𝜆), which would decrease
our degrees of freedom by one. As such, the reported degrees of freedom will be incorrect, as will the 𝑝-value.
Therefore, we will perform this test manually.

The value of the test statistic is computed as follows:
V <- with(accidents, sum((observed_count - expected_count)^2 / expected_count))

V

## [1] 55.71012

The degrees of freedom is given by 𝑘 − 2 = 4 − 2 = 2, for we lose one degree of freedom by estimating 𝜆 via
its MLE, and we have the constraint that the Poisson probabilities sum to one.

The 𝑝-value of this test is:
pchisq(V, df=4-2, lower.tail=FALSE)

## [1] 7.992856e-13

Since the 𝑝-value is less than 0.05, we reject the null hypothesis in favour of the alternative. We conclude
that there is sufficient evidence to support the claim that the data do not come from a Poisson distribution.

Question 4
(14.14) A study was conducted to determine the effect of early child care on infant-mother attachment
patterns. In the study, 93 infants were classified as either secure or anxious. In addition, the infants were
classified according to the average number of hours per week that they spent in child care.

Hours in child care
Attachment Low Moderate High
Pattern (0-3 Hours) (4-19 Hours) (20-54 Hours)
Secure 24 35 5
Anxious 11 10 8

(a) Do the data indicate a dependence between attachment patterns and the number of hours spent in
child care? Test using 𝛼 = 0.05.

The hypotheses we wish to test are:

𝐻0 ∶ There is no dependence between attachment patterns hours spent in child care

vs

𝐻1 ∶ There is a dependence between attachment patterns and hours spent in child care.

We start by calculating the row and column totals in the given table.
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Hours in child care
Attachment Low Moderate High Total
Pattern (0-3 Hours) (4-19 Hours) (20-54 Hours)
Secure 24 35 5 64
Anxious 11 10 8 29
Total 35 45 13 93

We then create a second table of the expected counts, whose cells are computed using:

Ê(𝑛𝑖𝑗) = 𝑟𝑖𝑐𝑗
𝑛 ≡ Row total ∗ Column total

Total sample size

Hours in child care
Attachment Low Moderate High Total
Pattern (0-3 Hours) (4-19 Hours) (20-54 Hours)

Secure 64 ∗ 35
93 = 24.09 64 ∗ 45

93 = 30.97 64 ∗ 13
93 = 8.95 64

Anxious 29 ∗ 35
93 = 10.91 29 ∗ 45

93 = 14.03 29 ∗ 13
93 = 4.05 29

Total 35 45 13 93

For a contingency table containing 𝑟 rows and 𝑐 columns, the test statistic is computed as:

𝑉 =
𝑐

∑
𝑗=1

𝑟
∑
𝑖=1

(𝑛𝑖𝑗 − ̂E(𝑛𝑖𝑗))2

Ê(𝑛𝑖𝑗)
.

Informally, the test statistic is computed by iterating over each cell in the table and calculating a
similar statistic used in the chi-square goodness of fit test:

𝑉 = ∑
All cells

(𝑂 − 𝐸)2

𝐸 ,

where 𝑂 is the observed count of the cell and 𝐸 is the expected count of the cell. Under the null
hypothesis, the distribution of 𝑉 is chi-squared with degrees of freedom (𝑟 − 1)(𝑐 − 1).
Plugging in the numbers from the two tables above, the value of the test statistic is found to be 7.267.
The degrees of freedom is (𝑟 −1)(𝑐 − 1) = (2−1)(3 −1) = 2. As this is an upper-tailed test, we reject
the null hypothesis if 𝑉 > 𝜒2

2, 0.05.
qchisq(0.05, df=2, lower.tail=FALSE)

## [1] 5.991465

Since 7.267 > 5.991, we reject the null hypothesis in favour of the alternative. We conclude that there
is sufficient evidence to support the claim that there is a dependence between attachment patterns and
child care hours.
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(b) Repeat (a) using R.

We begin by entering the data from the table.
infants <- matrix(

c(24, 35, 5, 11, 10, 8), byrow=TRUE, nrow=2, ncol=3,
dimnames = list(c("Secure", "Anxious"), c("Low", "Moderate", "High"))

)

infants

## Low Moderate High
## Secure 24 35 5
## Anxious 11 10 8

For this question, we can perform the chi-square test simply by supplying our data to the chisq.test()
function.
chisq.test(infants)

## Warning in chisq.test(infants): Chi-squared approximation may be incorrect

##
## Pearson's Chi-squared test
##
## data: infants
## X-squared = 7.267, df = 2, p-value = 0.02642

(We can safely ignore the warning given in the output.) Since the 𝑝-value is less than 0.05, we reject
the null hypothesis. We conclude that there is sufficient evidence to support the claim that there is a
dependence between attachment patterns and hours spent in child care.

Note that if we had swapped the dimensions of the contingency table, the result would still be the
same. (Again, we can safely ignore the warning given in the output.)
infants2 <- t(infants)

infants2

## Secure Anxious
## Low 24 11
## Moderate 35 10
## High 5 8

chisq.test(infants2)

## Warning in chisq.test(infants2): Chi-squared approximation may be incorrect

##
## Pearson's Chi-squared test
##
## data: infants2
## X-squared = 7.267, df = 2, p-value = 0.02642
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