## Stat 2605 Tutorial 5

November 1, 2022

1. Suppose that X has an  $\text{Exp}(\lambda = 2)$  distribution with pdf given by:

$$f(x) = \begin{cases} 2e^{-2x} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

(a) Calculate P(X > 2).

$$\mathbf{P}(X > 2) = \int_{2}^{\infty} f(x) dx$$

$$= \int_{2}^{\infty} 2e^{-2x} dx$$

$$d(-2x) = -2dx \iff -d(-2x) = 2dx$$

$$= -\int_{2}^{\infty} e^{-2x} d(-2x)$$

$$= -e^{-2x} \Big|_{x=2}^{x=\infty}$$

$$= -(0 - e^{-4})$$

$$= e^{-4}$$

(b) If  $X \sim \text{Exp}(\lambda = 2)$ , what is  $\mathbf{E}(X)$  and  $\mathbf{Var}(X)$ ? Use this to calculate  $\mathbf{E}(X^2)$ .

We saw last time (Tutorial 4, Question 3) that if  $X \sim \text{Exp}(\lambda = 2)$  then

$$\mathbf{E}(X) = \frac{1}{\lambda} = \frac{1}{2}.$$

It can also be shown that

$$Var(X) = \frac{1}{\lambda^2} = \frac{1}{2^2} = \frac{1}{4}.$$

To find  $\mathbf{E}(X^2)$  with the above given information, we simply need to rearrange the usual variance formula.

$$\mathbf{Var}(X) = \mathbf{E}(X^2) - (\mathbf{E}(X))^2 \iff \mathbf{E}(X^2) = \mathbf{Var}(X) + (\mathbf{E}(X))^2$$

1

It follows that

$$\mathbf{E}(X^2) = \frac{1}{4} + \left(\frac{1}{2}\right)^2 = \frac{1}{2}.$$

2. Suppose  $X \sim N(\mu = 4, \sigma^2 = 3^2)$ . Calculate  $\mathbf{P}(2 < X < 5)$ .

Recall that if  $X \sim N(\mu, \sigma^2)$  then

$$Z := \frac{X - \mu}{\sigma} \sim N(0, 1).$$

This property is extremely convenient for us because it means that we can use a single table of probabilities for all normal distributions, rather than using a specific probability table for each normal distribution we come across!

$$\mathbf{P}(2 < X < 5) = \mathbf{P}\left(\frac{2-4}{3} < \frac{X-4}{3} < \frac{5-4}{3}\right)$$

$$= \mathbf{P}\left(-\frac{2}{3} < Z < \frac{1}{3}\right)$$

$$= \mathbf{P}\left(Z < \frac{1}{3}\right) - \mathbf{P}\left(Z < -\frac{2}{3}\right)$$

$$= \mathbf{P}\left(Z < \frac{1}{3}\right) - \mathbf{P}\left(Z > \frac{2}{3}\right)$$

$$= \mathbf{P}\left(Z < \frac{1}{3}\right) - \left(1 - \mathbf{P}\left(Z < \frac{2}{3}\right)\right)$$

$$= \mathbf{\Phi}(0.33) - \left(1 - \mathbf{\Phi}(0.67)\right)$$

$$= 0.6293 - \left(1 - 0.7486\right)$$

$$= 0.3779$$
(2.1)

Notes:

(2.1) For a continuous random variable X,

$$\mathbf{P}(a < X < b) = \mathbf{P}(X < b) - \mathbf{P}(X < a).$$

(2.2) Since you will only be given the normal probability table for values of  $z \ge 0$ , we use the symmetry property of the normal distribution:

$$\mathbf{P}(Z<-z)=\mathbf{P}(Z>z).$$

(2.3) Since the normal probability table gives probabilities of the form P(Z < z), we use the complement rule:

$$\mathbf{P}(Z > z) = 1 - \mathbf{P}(Z < z)$$

## 3. Suppose X has pdf given by:

$$f(x) = \begin{cases} \frac{2(x+1)}{3} & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

Let  $Y = e^X + 1$ . Find the pdf of Y.

$$Let g(X) = Y = e^X + 1.$$

We start by solving for X to obtain the inverse of this transformation.

$$e^{X} + 1$$
 =  $Y$   
 $\iff e^{X}$  =  $Y - 1$   
 $\iff X$  =  $\log(Y - 1)$ 

Thus, we have:

$$g(X) = Y = e^X + 1$$
  
 $g^{-1}(Y) = X = \log(Y - 1)$ 

Next, we will need to find  $\left| \frac{dx}{dy} \right| = \left| \frac{dg^{-1}(y)}{dy} \right|$ .

$$\left| \frac{d g^{-1}(y)}{dy} \right| = \left| \frac{d}{dy} \log (y - 1) \right| = \left| \frac{1}{y - 1} \right|$$

Now, note the new support of Y:

$$0 < x < 1$$

$$\iff e^0 < e^x < e^1$$

$$\iff e^0 + 1 < e^x + 1 < e^1 + 1$$

$$\iff 2 < y < e + 1$$

As such,  $\left| \frac{d g^{-1}(y)}{dy} \right| = \left| \frac{1}{y-1} \right|$  is always positive and the absolute values can be dropped.

Finally, the pdf of Y is given by:

$$f_Y(y) = f_X(g^{-1}(y)) \cdot \left| \frac{dg^{-1}(y)}{dy} \right|$$
$$= f_X(\log(y-1)) \cdot \frac{1}{y-1}$$

$$= \frac{2(\log(y-1)+1)}{3(y-1)},$$

for  $y \in (2, e + 1)$ , and zero otherwise.

4. Let X have pdf given by:

$$f(x) = \begin{cases} 4x^3 & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

Let  $Y = 1/\sqrt{X}$ . Find the pdf of Y.

Let  $g(X) = Y = 1/\sqrt{X}$ . Note that we will ignore the case where x = 0 which will result in division by zero.

We start by solving for X to obtain the inverse of this transformation.

$$\frac{1}{\sqrt{X}} = Y$$

$$\iff \sqrt{X}$$

$$= \frac{1}{Y}$$

$$\iff X$$

$$= \frac{1}{Y^2}$$

Thus, we have:

$$g(X) = Y = \frac{1}{\sqrt{X}}$$
$$g^{-1}(Y) = X = \frac{1}{V^2}$$

Next, we will find  $\left| \frac{dx}{dy} \right| = \left| \frac{dg^{-1}(y)}{dy} \right|$ .

$$\left| \frac{d g^{-1}(y)}{dy} \right| = \left| \frac{d}{dy} y^{-2} \right| = \left| -2y^{-3} \right| = 2 \left| y^{-3} \right|$$

Now, we note the new support of Y:

$$0 < x \le 1$$

$$\iff \sqrt{0} < \sqrt{x} \le \sqrt{1}$$

$$\iff \infty > \frac{1}{\sqrt{x}} \ge \frac{1}{\sqrt{1}}$$

$$\iff 1 \le y < \infty$$

As such,  $\left| \frac{dg^{-1}(y)}{dy} \right| = 2|y^{-3}|$  is always positive and the absolute values can be dropped.

Finally, the pdf of Y is given by:

$$f_Y(y) = f_X(g^{-1}(y)) \cdot \left| \frac{d g^{-1}(y)}{dy} \right|$$
$$= f_X\left(\frac{1}{y^2}\right) \cdot 2y^{-3}$$
$$= 4\left(\frac{1}{y^2}\right)^3 \cdot \frac{2}{y^3}$$
$$= \frac{8}{y^9},$$

for  $y \ge 1$ , and zero otherwise.

5. Suppose X has pdf given by:

$$f(x) = \begin{cases} \frac{3}{7}x^2 & 1 < x < 2\\ 0 & \text{otherwise} \end{cases}$$

Outline the steps required to simulate X by generating a  $U \sim \text{Unif}(0,1)$ .

The cdf of X is given by

$$F(x) = \int_{-\infty}^{x} f(t) dt$$
$$= \int_{1}^{x} \frac{3}{7} t^{2} dt$$
$$= \left. \frac{1}{7} t^{3} \right|_{t=1}^{t=x}$$
$$= \frac{1}{7} (x^{3} - 1)$$

$$F(x) = \begin{cases} 0 & x \le 1 \\ \frac{1}{7}(x^3 - 1) & 1 < x < 2 \\ 1 & x \ge 2 \end{cases}$$

If u is the observation generated from the Unif(0,1), then we set

$$u = \frac{1}{7}(x^3 - 1)$$

and solve for x. This series of steps is fine if we are generating a single observation from the distribution of X.

For larger samples, it may be more convenient to find the *quantile function* which is often the inverse of the cdf. This way, we do not need to repeatedly solve for x.

Let p be some probability such that

$$p = F(x) = \mathbf{P}(X \le x) = \frac{1}{7}(x^3 - 1).$$

$$\frac{1}{7}(x^3 - 1) = p$$

$$\iff x^3 - 1 = 7p$$

$$\iff x^3 = 7p + 1$$

$$\iff x = (7p + 1)^{1/3}$$

For every value u generated from the Unif(0,1), we simply substitute it in place of p. Then

$$x = (7u + 1)^{1/3}$$

is a simulated observation from the distribution of X.