Stat 2605 Tutorial 8

December 6, 2022

Note: for readability, I use X_t rather than X(t).

- 1. New students come to a registration center as a Poisson process N_t . On average, 40 students arrive in 15 minutes. Find the probability that there are at least four students arriving within two minutes.
- 2. Suppose $\{X_t: t=0,1,2,3,\ldots\}$ is a time homogeneous Markov chain with the set of states $S=\{1,2\}$ and one step transition probability matrix:

$$P = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} = \begin{bmatrix} 1/3 & 2/3 \\ 1/4 & 3/4 \end{bmatrix},$$

where p_{ij} is the probability of transitioning from state i to state j, which we may also denote using $\mathbf{P}(i \to j)$.

(a) Suppose $P(X_0 = 2) = 1$. Find

$$P(X_3 = 2, X_2 = 1, X_1 = 1, X_0 = 2)$$
.

(b) Suppose $P(X_0 = 2) = 1/3$. Find

$$\mathbf{P}(X_3 = 1, X_2 = 2, X_1 = 1, X_0 = 2).$$

(c) Find the probability distribution π_2 of X_2 if X_0 has probability distribution

$$\pi_0 = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix}$$

Property of the Markov chain (will not be proven): Suppose that X_t is a Markov chain for time $t=0,1,2,\ldots$ Then for any $t_1 < t_2 < t_3 < \ldots$ (where t_1,t_2,t_3,\ldots are not necessarily consecutive integers), we have:

$$\mathbf{P}\left(X_{t_{n+1}} = i_{n+1} \mid X_{t_n} = i_n, X_{t_{n-1}} = i_{n-1}, \dots, X_{t_1} = i_1\right) = \mathbf{P}\left(X_{t_{n+1}} = i_{n+1} \mid X_{t_n} = i_n\right)$$

In other words, the probability of a state at a future time step given the states of the past time steps, depends only on the state at the most recent conditioned time step.

Example: Consider a two-step transition probability with state space $S = \{1, 2, 3, 4\}$. From the results of the previous property:

$$P(X_4 = 2 | X_2 = 3, X_0 = 1) = P(X_4 = 2 | X_2 = 3)$$

3. Continuing with $\{X_t\}$ as defined in Question 2, let $\mathbf{P}(X_0=2)=1/2$. Find

$$\mathbf{P}(X_5=1, X_2=2, X_0=2).$$

- $4.\,$ Consider again, the Markov chain introduced in Question $2.\,$
 - (a) Is this Markov chain ergodic?
 - (b) Find its steady-state probabilities.