Tutorial 2: Questions January 24, 2018 ## Review - Consider a data set with n entries. - If n is odd, the median will be a value in the data set. Since Q_1 will be the median of the lower $\lceil n/2 \rceil$ values, and Q_3 will be the median of the upper $\lceil n/2 \rceil$ values, the median is included in the determination of Q_1 and Q_3 . - If n is even, the median is the average of the two centre values which may or may not be in the data set. Regardless, the median when n is even divides the data precisely into two groups. Q_1 and Q_3 are simply the medians of the lower and upper halves, respectively. ## Question 1.S.70, Page 48-49 (a) Construct a comparative boxplot of the weight and treadmill observations, and comment on what you see. For your convenience the sorted x (Weights) and y (Treadmill) values are as follows: (b) The data is in the form of (x, y) pairs, with x and y measurements on the same variable under two different conditions, so it is natural to focus on the differences within pairs: $$d_1 = x_1 - y_1, \dots, d_n = x_n - y_n.$$ Construct a boxplot of the sample differences. What does it suggest? Below are the sorted differences. | Obs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |------------------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | $\overline{d_i}$ | -2.8 | -0.4 | 2.2 | 2.5 | 2.5 | 3.3 | 5.9 | 6.2 | 8.4 | 8.7 | 9.1 | 9.1 | 10.4 | 11.5 | 14.4 | ## Question 5.3.38, Page 229 There are two traffic lights on a commuter's route to and from work. Let X_1 be the number of lights at which the commuter must stop on his way to work, and X_2 be the number of lights at which he must stop when returning from work. Suppose these two variables are independent, each with pmf given in the accompanying table (so X_1 , X_2 is a random sample of size n = 2). - (a) Determine the pmf of $T = X_1 + X_2$. - (b) Calculate μ_T . How does it relate to μ , the population mean? - (c) Calculate σ_T^2 . How does it relate to σ^2 , the population variance? - (d) Let X_3 and X_4 be the number of lights at which a stop is required when driving to and from work on a second day assumed independent of the first day. With $T = X_1 + \ldots + X_4$, what now are the values of E(T) and Var(T)? - (e) Referring back to (d), what are the values of P(T = 8) and $P(T \ge 7)$ [Hint: Don't even think of listing all possible outcomes!]