Tutorial 3: Questions

January 31, 2018

Review

Let $X_1, X_2, ..., X_n$ be an iid sample from a distribution with mean μ and variance σ^2 .

- In general, $\mathbf{E}(\overline{X}) = \mu$, and $\mathbf{Var}(\overline{X}) = \sigma^2/n$. Similarly, $\mathbf{E}(T) = n\mu$, and $\mathbf{Var}(T) = n\sigma^2$.
- In the special case that these X_i s come from a normal distribution, then:
 - $-\overline{X} \sim N(\mu, \sigma^2/n)$ and
 - $-T \sim N(n\mu, n\sigma^2).$

Question 5.4.54, Page 237

Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean 2.65 and standard deviation 0.85.

- (a) If a random sample of 25 specimens is selected, what is the probability that the sample average sediment density is at most 3.00? Between 2.65 and 3.00?
- (b) How large a sample size would be required to ensure that the first probability in part (a) is at least .99?

Question 5.5.72, Page 243

I have three errands to take care of in the Administration Building. Let X_i be the time that it takes for the i^{th} errand (i = 1, 2, 3), and let X_4 be the total time in minutes that I spend walking to and from the building and between each errand. Suppose the X_i s are independent and normally distributed, with the following means and standard deviations:

$$\mu_1 = 15, \, \sigma_1 = 4; \quad \mu_2 = 5, \, \sigma_2 = 1; \quad \mu_3 = 8, \, \sigma_3 = 2; \quad \mu_4 = 12, \, \sigma_4 = 3.$$

I plan to leave my office at precisely 10:00 a.m. and wish to post a note on my door that reads, "I will return by t a.m." What time t should I write down if I want the probability of my arriving after t to be 0.01?

Question 6.1.10, Page 263

Using a long rod that has length μ , you are going to lay out a square plot in which the length of each side is μ . Thus the area of the plot will be μ^2 . However, you do not know the value of μ , so you decide to make n independent measurements X_1, X_2, \ldots, X_n of the length. Assume that each X_i has mean μ (unbiased measurements) and variance σ^2 .

- (a) Show that \overline{X}^2 is not an unbiased estimator for μ^2 . [Hint: For any rv Y, $\mathbf{E}(Y^2) = \mathbf{Var}(Y) + \mathbf{E}(Y)^2$. Apply this with $Y = \overline{X}$.
- (b) For what value of k is the estimator $\overline{X}^2 kS^2$ unbiased for μ^2 ? [Hint: Compute $\mathbf{E}(\overline{X}^2 kS^2)$.]

Finding a MLE: Exponential

Suppose we are given a sample $X_1, X_2, ..., X_n \stackrel{\text{iid}}{\sim} \text{Exp}(\theta)$, where θ is an unknown parameter $(\theta > 0)$. Find a Maximum Likelihood Estimate for θ . Is the maximum likelihood estimator that you obtain also an unbiased estimator?