
Tutorial 3: Solutions

January 31, 2018

Question 5.4.54, Page 237
Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally
distributed with mean 2.65 and standard deviation 0.85.

(a) If a random sample of 25 specimens is selected, what is the probability that the sample average sediment
density is at most 3.00? Between 2.65 and 3.00?
Let X be a specimen where X ∼ N(µ = 2.65, σ2 = 0.852). Then X ∼ N(µ = 2.65, σ2/n = 0.852/25).

From this, we have that Z :=
X − 2.65

0.85/
√
25

∼ N(0, 1).

P
(
X ≤ 3.00

)
= P

(
X − 2.65

0.85/5
≤ 3.00− 2.65

0.85/5

)
= P (Z ≤ 2.059)

= 0.98025

P
(
2.65 ≤ X ≤ 3.00

)
= P

(
2.65− 2.65

0.85/5
≤ X − 2.65

0.85/5
≤ 3.00− 2.65

0.85/5

)
= P (0 ≤ Z ≤ 2.059)

= P (Z ≤ 2.059)−P (Z ≤ 0)

= 0.98025− 0.50000

= 0.48025

(b) How large a sample size would be required to ensure that the first probability in part (a) is at least
.99?

P
(
X ≤ 3.00

)
≥ 0.99

P

(
X − 2.65

0.85/
√
n

≤ 3.00− 2.65

0.85/
√
n

)
≥ 0.99

P

(
Z ≤

√
n

(
3.00− 2.65

0.85

))
≥ 0.99

√
n

(
3.00− 2.65

0.85

)
≥ 2.3263

n ≥ 31.918



n must be an integer so we round it up to 32. Therefore, we need a sample size of at least 32 in order
to ensure the probability in (a) is at least 0.99.

Question 5.5.72, Page 243
I plan to leave my office at precisely 10:00 a.m. and wish to post a note on my door that reads, “I will return
by t a.m.” What time t should I write down if I want the probability of my arriving after t to be 0.01?

Let T be the total time it takes to run all three errands, including travel time: T = X1+X2+X3+X4 =
4∑

i=1
Xi.

Then we have that

E (T ) = E

(
4∑

i=1

Xi

)
=

4∑
i=1

E (Xi) = 15 + 5 + 8 + 12 = 40

Var (T ) = Var

(
4∑

i=1

Xi

)
=

4∑
i=1

Var (Xi) = 42 + 12 + 22 + 32 = 30

Since each Xi was from a normal distribution, we conclude that T ∼ N(µ = 40, σ2 = 30). Converting to
standard normal, Z :=

T − 40√
30

∼ N(0, 1). We want to find P (T ≥ t) = 0.01.

P

(
T − 40√

30
≥ t− 40√

30

)
= 0.01

P

(
Z ≥ t− 40√

30

)
= 0.01

1−P

(
Z ≥ t− 40√

30

)
= 1− 0.01

P

(
Z ≤ t− 40√

30

)
= 0.99

t− 40√
30

= 2.3263

t = 52.741

Since t = 52.741 guarantees that P (T ≥ t) = 0.01, we must round upwards to the nearest minute. Therefore,
the sign that we post should read “I will return by 10:53 a.m.”.



Question 6.1.10, Page 263

(a) Show that X
2 is not an unbiased estimator for µ2. [Hint: For any rv Y , E

(
Y 2
)
= Var (Y ) + E (Y )2.

Apply this with Y = X.

X =
1

n

n∑
i=1

Xi

Var
(
X
)
= Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var (Xi) =
nσ2

n2
=

σ2

n

E
(
X
)
= E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E (Xi) =
nµ

n
= µ

E
(
X

2
)
= Var

(
X
)
+
(
E
(
X
))2

=
σ2

n
+ µ2 ̸= µ2

Therefore, X2 is not an unbiased estimator of µ2.

(b) For what value of k is the estimator X
2 − kS2 unbiased for µ2? [Hint: Compute E

(
X

2 − kS2
)

.]

We want to find k such that E
(
X

2 − kS2
)
= µ2.

E
(
X

2 − kS2
)
= E

(
X

2
)
− kE

(
S2
)
=

σ2

n
+ µ2 − kσ2

In order for σ2

n
+ µ2 − kσ2 = µ2 to be true, we need k =

1

n
.

Therefore, an unbiased estimator of µ2 is X
2 − S2

n
.

Finding a MLE: Exponential

Suppose we are given a sample X1, X2, . . ., Xn
iid∼ Exp(θ), where θ is an unknown parameter (θ > 0). Find a

Maximum Likelihood Estimate for θ. Is the maximum likelihood estimator that you obtain also an unbiased
estimator?
The likelihood function is simply the product of the probability density functions of each Xi.

L(θ | x⃗) =
n∏

i=1

1

θ
exp

{
−xi
θ

}

= θ−n exp

{
−1

θ

n∑
i=1

xi

}

We take the log of both sides since the log-likelihood will be easier to work with.

l(θ | x⃗) := ln(L(θ | x⃗)) = −n ln θ − 1

θ

n∑
i=1

xi

dl

dθ
= −n

θ
+

1

θ2

n∑
i=1

xi



We know that the maximum of l(θ) occurs when the first derivative equals 0. Thus we set the first derivative
equal to 0 and we solve for θ̂.

0 = −n

θ̂
+

1

θ̂2

n∑
i=1

xi

n

θ̂
=

1

θ̂2

n∑
i=1

xi

θ̂n =

n∑
i=1

xi

θ̂ =
1

n

n∑
i=1

xi = x

We need to find the second derivative of our log-likelihood function and plug in our MLE to verify that this
is indeed a maximum.

d2l

dθ2
=

n

θ2
− 2

θ3

n∑
i=1

xi

d2l

dθ2

∣∣∣∣
θ=θ̂

=
n(

1

n

n∑
i=1

xi

)2 −
2

n∑
i=1

xi(
1

n

n∑
i=1

xi

)3

=
n3(

n∑
i=1

xi

)2 − 2n3(
n∑

i=1
xi

)2

=
−n3(
n∑

i=1
xi

)2

Notice that n represents the number of elements in our sample (which is always non-negative) and therefore
−n3 is always negative. Our denominator is a quantity squared, and squared real values are always positive.
Therefore, our second derivative evaluated at our MLE is less than 0. Recall from first year calculus that
this means that θ̂ is in fact a maximum and we conclude that θ̂ = X is a MLE for θ.

We now want to check whether θ̂ is an unbiased estimator of θ. We do this by taking the expected value of
θ̂ and checking whether it equals θ. Recall that for a random variable X ∼ Exp(θ), E (X) = θ.

E
(
θ̂
)
= E

(
X
)

= E

(
1

n

n∑
i=1

Xi

)

=
1

n

n∑
i=1

E (Xi)

=
nθ

n

= θ



Therefore we conclude that our MLE θ̂ = X is an unbiased estimator of θ. It is important to note that a
Maximum Likelihood Estimator is not always an unbiased estimator!

Also note that being an unbiased estimator means that after several trials, the average of your estimates of
the unknown parameter (expected value) will equal your unknown parameter. This does not guarantee that
your estimator actually hit the true value dead-on, as illustrated in tutorial. You could be far off, you could
be close. Sometimes we prefer a biased estimator if we know that it estimates a value very, very close to the
true value but is consistently off by a certain amount.
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