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Question 10.1.10, Page 420
Please remember to go over this proof. The solution can be found in the file ANOVA and Regression
Proofs.pdf in the Winter 2018 folder. This provides the ground work as to why we can do what we are
doing.

Question 10.1.6, Page 419

library(knitr)
library(kableExtra)
i1 <- c(20.5, 28.1, 27.8, 27.0, 28.0, 25.2, 25.3, 27.1, 20.5, 31.3)
i2 <- c(26.3, 24.0, 26.2, 20.2, 23.7, 34.0, 17.1, 26.8, 23.7, 24.9)
i3 <- c(29.5, 34.0, 27.5, 29.4, 27.9, 26.2, 29.9, 29.5, 30.0, 35.6)
i4 <- c(36.5, 44.2, 34.1, 30.3, 31.4, 33.1, 34.1, 32.9, 36.3, 25.5)
dt <- rbind(i1,i2,i3,i4)

Display the data

kable(dt, booktabs=TRUE) %>%
add_header_above(c(" " = 1, "Fe Amount" = 10)) %>%
kable_styling(latex_options="striped")

Fe Amount
i1 20.5 28.1 27.8 27.0 28.0 25.2 25.3 27.1 20.5 31.3
i2 26.3 24.0 26.2 20.2 23.7 34.0 17.1 26.8 23.7 24.9
i3 29.5 34.0 27.5 29.4 27.9 26.2 29.9 29.5 30.0 35.6
i4 36.5 44.2 34.1 30.3 31.4 33.1 34.1 32.9 36.3 25.5

We have four treatment groups and ten observations per group. Then:

• I = 4

• Ji = 10 for i = 1, 2, 3, 4

Compute treatment sums and grand mean

sapply(list(i1,i2,i3,i4), sum)

## [1] 260.8 246.9 299.5 338.4

This tells us that:
10∑
j=1

x1j = 260.8
10∑
j=1

x2j = 246.9
10∑
j=1

x3j = 299.5
10∑
j=1

x4j = 338.4
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x·· =

I∑
i=1

Ji∑
j=1

xij

I∑
i=1

Ji

=

I∑
i=1

J∑
j=1

xij

IJ
(when Ji is constant)

=

4∑
i=1

(
10∑
j=1

xij

)
40

= 260.8 + 246.9 + 299.5 + 338.4
40

= 28.64

Compute treatment sample mean and variances
The formulas for the sample means and sample variances are exactly the same (just with different notation).
So we can compute them the regular way in R.
sapply(list(i1,i2,i3,i4), mean)

## [1] 26.08 24.69 29.95 33.84

This gives us:

x1· = 26.08 x2· = 24.69 x3· = 29.95 x4· = 33.84

Similarly:
sapply(list(i1,i2,i3,i4), var)

## [1] 11.50178 19.58322 8.14500 23.34044

s2
1 = 11.50 s2

2 = 19.58 s2
3 = 8.15 s2

4 = 23.34

Compute SSTr

SSTr =
I∑
i=1

Ji(xi· − x··)2

= J

I∑
i=1

(xi· − x··)2 (for Ji constant)

= 10
(
(26.08− 28.64)2 + (24.69− 28.64)2 + (29.95− 28.64)2 + (33.84− 28.64)2)

= 509.122
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Compute SSE

SSE =
I∑
i=1

(Ji − 1)s2
i

= (J − 1)
I∑
i=1

s2
i (for Ji constant)

= 9 ((11.50 + 19.58 + 8.15 + 23.34))

= 563.134

Compute SST
SST = SSTr + SSE, so:

SSTr = 509.122 + 563.134 = 1072.256

Create ANOVA table

Source df SS MS F-value
Treatment a d h F

Error b e k

Total c g

a = I − 1 = 4− 1 = 3

b = I(J − 1) = 4(10− 1) = 4× 9 = 36

c = IJ − 1 = a+ b = 3 + 36 = 39

d = SSTr = 509.122

e = SSE = 563.134

g = SST = 1072.256

h = d

a
= 509.122

3 = 169.707

k = e

b
= 563.134

36 = 15.643

F = h

k
= 169.707

15.643 = 10.849

Filling in the table:

Source df SS MS F-value
Treatment 3 509.122 169.707 10.849

Error 36 563.134 15.643
Total 39 1072.256
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Perform the hypothesis test
H0 : µ1 = µ2 = µ3 = µ4

HA : At least one pair unequal

This will always be an upper tailed test by the information given in Lecture 7 Slide 8. We reject the null
hypothesis if F > FI−1,I(J−1),1−α, where 1− α is the area to the left. (α was given as 0.01).

FI−1,I(J−1),1−α = F3,36,0.99

qf(0.99, df1=3, df2=36)

## [1] 4.377096

Since 10.849 > 4.377, we reject the null hypothesis at the 1% significance level. In other words, the data
suggests that the treatment means are not equal for at least one pair. In the context of this question, we
conclude that mean iron content is not the same among the four iron formations.

NOTE: Table A.9 in the textbook only gives F3,30,0.01 = 4.51 and F3,40,0.01 = 4.31 (0.01 is the area to the
right). On an assignment, you should be using R to get an exact quantile value. In a test setting, even if you
don’t have the exact value of F3,36,0.01, you could still infer that this value is somewhere between 4.31 and
4.51. Since our observed test value is 10.849, which is greater than both of these bounds, we can still make a
conclusion despite not knowing the exact quantile value.

The p-value of this test can be calculated as:
pf(10.849, df1=3, df2=36, lower.tail=FALSE)

## [1] 3.199146e-05

Since this value is less than 0.01, using the p-value method we would also reject the null hypothesis at the 1%
significance level. (Remember that we want area to the right of F since this is an upper-tailed test so we
need lower.tail=FALSE).

Question 10.1.7, Page 419
Fill in the ANOVA table

Source df SS MS F-value
Mixture a d g F

Error b e 13.929
Total c 5664.415

We are told that there are six different mixtures and 26 measurements per mixture. Then we have:

• I = 6

• Ji = 26 for i = 1, 2, ..., 6.

a = I − 1 = 5

b = I(J − 1) = 6(26− 1) = 150

c = a+ b = 5 + 150 = 155
e

b
= e

150 = 13.929 =⇒ e = 13.929× 150 = 2089.35

d+ e = d+ 2089.35 = 5664.415 =⇒ d = 5664.415− 2089.35 = 3575.065
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g = d

a
= 3575.065

5 = 715.013

F = g

13.929 = 715.013
13.929 = 51.33

Source df SS MS F-value
Mixture 5 3575.065 715.013 51.33
Error 150 2089.35 13.929
Total 155 5664.415

Perform the hypothesis test
H0 : µ1 = µ2 = ... = µ6

HA : At least one pair unequal

Take α = 0.05. We reject the null hypothesis if F > FI−1,I(J−1),1−α, where 1− α is the area to the left.

FI−1,I(J−1),1−α = F5,150,0.95

qf(0.95, df1=5, df2=150)

## [1] 2.274491

Since 51.33 > 2.27, we can reject the null hypothesis at the 5% significance level. We conclude that there is
evidence against the assumption of equal mean electrical resistivity among mixtures.

Using the p-value method:
pf(51.33, df1=5, df2=150, lower.tail=FALSE)

## [1] 8.32117e-31

Since this value is less than 0.05, we would reject the null hypothesis, as expected.

5


	Question 10.1.10, Page 420
	Question 10.1.6, Page 419
	Display the data
	Compute treatment sums and grand mean
	Compute treatment sample mean and variances
	Compute SSTr
	Compute SSE
	Compute SST
	Create ANOVA table
	Perform the hypothesis test

	Question 10.1.7, Page 419
	Fill in the ANOVA table
	Perform the hypothesis test


