Tutorial 12

Week of April 8, 2019

Question 12.2.16, Page 507

An article gave a scatterplot, along with the least squares line, where x represents rainfall volume (m^3) and y represents runoff volume (m^3) for a particular location. The accompanying values were read from the plot.

					23 127					
\overline{y}	4 53	10 70	13 82	15 99	15 100	25	27	46	38	46

$$\sum x = 798$$
 $\sum y = 643$ $\sum x_i^2 = 63040$ $\sum y_i^2 = 41999$ $\sum x_i y_i = 51232$

- (a) Calculate point estimates of the slope and intercept of the population regression line.
- (b) Calculate a point estimate of the true average runoff volume when rainfall volume is 50.
- (c) Calculate a point estimate of the standard deviation σ .
- (d) What proportion of the observed variation in runoff volume can be attributed to the simple linear regression relationship between runoff and rainfall?
- (e) In R: Does a scatterplot of the data support the use of the simple linear regression model? Repeat parts (a)-(d) in R.

Height/Weight of Women

Consider the data set women in R, but pretend that each observation represents a single person instead of an average. Using R:

- (a) Compute the regression parameters using weight as the predictor and height as the response.
- (b) Give a 95% confidence interval for the true slope of the line.
- (c) Conduct a hypothesis test at the 5% significance level of whether the true slope differs from zero.
- (d) What does the coefficient of determination measure? What is its value for this model?
- (e) State the assumptions of linear regression. Create diagnostic plots to check these assumptions. Are the assumptions satisfied?