Tutorial 1

September 24, 2020

Question 1

Suppose we draw 2 cards (without replacement) from a deck of 52 cards.
Let $A=$ "the first card is an ace"
Let $B=$ "the second card is a spade"
Are A and B independent events?

Question 2

Two players, A and B, are shooting at a target simultaneously and independently. For each round, the probabilities of hitting the target are:

- $1 / 2$ for player \mathbf{A}
- $1 / 4$ for player B

The game continues until the target is hit (i.e. if both miss, another round is played). The game ends if, in a particular round, any of the following occur:

- A hits, B misses. A wins.
- B hits, A misses. B wins.
- A hits, B hits. A and B tie.

What is the probability of \mathbf{A} winning the game?

Question 3

A student is taking an exam that has a one hour time limit. Suppose the probability that the student finishes the exam in less than x hours is $x / 2$, for all $0<x<1$. Then, given that the student is still working after 0.75 hours, what is the conditional probability that the full hour is used?

Question 4

Suppose we have five boxes, each containing four balls:

- Box 0: 4 white balls
- Box 1: 3 white balls, 1 black ball
- Box 2: 2 white balls, 2 black balls
- Box 3: 1 white ball, 3 black balls
- Box 4: 4 black balls
(a) A box is chosen at random and two balls are drawn without replacement. What is the probability that both balls are black?
(b) A box is chosen at random and two balls are drawn with replacement. What is the probability that both balls are black?
(c) A box is chosen at random and two balls are drawn without replacement. Given that both balls are black, what is the probability that they came from Box 2 ?

Question 5

(a) Suppose we have a system as above that functions if at least one of its components are functioning. It is known that:

- Component 1 functions 90% of the time
- Component 2 functions 80% of the time
- The states of the components are independent

What is the probability that the system is non-functioning?
(b) Now consider a system similar to (a) but with n parallel components. Once again, the system will function if at least one of its components are functioning, and the states of the components are independent.
Let C_{i} denote the event that component i is functioning, $i=1,2, \ldots, n$. What is the probability that the system is functioning?

