
Order Statistics

December 3, 2020

Consider a random sample X1, X2, . . . , Xn from a continuous distribution with PDF f with support S = (a, b)
and CDF F . Define:

X(1) = smallest of X1, X2, . . . , Xn = min {X1, X2, . . . , Xn}

X(2) = second smallest of X1, X2, . . . , Xn

...

X(n−1) = second largest of X1, X2, . . . , Xn

X(n) = largest of X1, X2, . . . , Xn = max {X1, X2, . . . , Xn}

X(1) < X(2) < . . . < X(n) are known as the order statistics and represent X1, X2, . . . , Xn when the Xis
have been arranged in ascending order.

1 Distributions of the maximum and minimum of a random sample
1.1 Maximum of a random sample
By the definition of a CDF, the CDF of X(n) is defined as

Fmax(x) = P
(
X(n) ≤ x

)
= P (max {X1, X2, . . . Xn} ≤ x)

When the maximum of a sample is less than or equal to some value x, it must be that all (unordered)
elements of the sample must also be simultaneously less than or equal to the value x.

P (max {X1, X2, . . . Xn} ≤ x) = P (X1 ≤ x, X2 ≤ x, . . . , Xn ≤ x) (Def’n of maximum)

= P (X1 ≤ x) ·P (X2 ≤ x) · . . . ·P (Xn ≤ x) (Independence)

= (F (x))n (Identically distributed)

The PDF of X(n) can be obtained by differentiating the CDF with respect to x.

fmax(x) =
dFmax

dx
=

d

dx
(F (x))n = n (F (x))n−1 f(x)

for all values x ∈ S, and zero otherwise.

1.2 Minimum of a random sample
The CDF of the minimum of a sample can be obtained similarly. We start by considering the same approach
as above.

Fmin(x) = P
(
X(1) ≤ x

)
= P (min {X1, X2, . . . , Xn} ≤ x)
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However, claiming that the minimum of a random sample is less than or equal to some value x does not
convey any additional information. Instead, let us rephrase the above equality using the complementary
CDF.

P (min {X1, X2, . . . , Xn} ≤ x) = 1−P (min {X1, X2, . . . , Xn} > x)

We can now use the fact that if the minimum of a sample is greater than some value x, it must be that all
(unordered) elements of the sample must also be simultaneously greater than the value x.

1−P (min {X1, X2, . . . , Xn} > x) = 1−P (X1 > x, X2 > x, . . . , Xn > x) (Def’n of minimum)

= 1−P (X1 > x) ·P (X2 > x) · . . . ·P (Xn > x) (Independence)

= 1− (1− F (x))n (Identically distributed)

The PDF of X(1) can be obtained by differentiating the CDF with respect to x.

fmin(x) =
dFmin

dx
=

d

dx
(1− (1− F (x))n) = −n (1− F (x))n−1 (−f(x)) = n (1− F (x))n−1 f(x)

for all values x ∈ S, and zero otherwise.

2 Distributions of the jth order statistic
2.1 CDF of the jth order statistic
What about the distribution of X(j) where 1 < j < n?

In order for X(j) to be less than or equal to some value x, it must be that exactly j of the (unordered)
elements of the sample are also simultaneously less than or equal to the value x. Let us define a new random
variable, N , such that

N = the number of Xi ≤ x

Each Xi will then either be less than or equal to x with probability F (x), or greater than x with probability
1 − F (x). Then N ∼ Binomial(n, p = F (x)). From the PMF of the binomial distribution, we can obtain
the CDF of X(j) as

F(j)(x) = P
(
X(j) ≤ x

)
=

n∑
k=j

(
n

k

)
(F (x))k(1− F (x))n−k

A somewhat hand-wavey approach to finding the PDF of X(j) can be found starting on page 369 of Blitzstein
and Hwang’s Introduction to Probability. An even better hand-wavey approach can be found in section 6.6 of
Ross’ A First Course in Probability. We will take an alternative approach that requires a brief introduction
to the beta distribution (which will be discussed in lecture soon).

2.2 A brief introduction to the beta distribution
The beta function, B(a, b), is defined as

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

1∫
0

xa−1(1− x)b−1 dx

where a, b > 0 and Γ(a) = (a − 1)! for a ∈ Z+. To make a proper probability density function out of this,
the integral must integrate to 1. To achieve this, we can divide both sides by B(a, b) such that

1 =

1∫
0

1

B(a, b)
xa−1 (1− x)b−1 dx =

1∫
0

Γ(a+ b)

Γ(a)Γ(b)
xa−1 (1− x)b−1 dx
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Then
f(x) =

1

B(a, b)
xa−1(1− x)b−1, x ∈ (0, 1), a, b > 0

and zero otherwise, is the density of the beta distribution.

There is an interesting connection between a binomial sum and a beta integral.

Lemma 1 For 0 < p < 1, and j, n ∈ Z+ where j ≤ n,

n∑
k=j

(
n

k

)
pk (1− p)n−k =

p∫
0

1

B(j, n− j + 1)
xj−1 (1− x)(n−j+1)−1 dx

or equivalently,

n∑
k=j

(
n

k

)
pk (1− p)n−k =

p∫
0

n!

(j − 1)! (n− j)!
xj−1 (1− x)n−j dx

This lemma will not be proven, but we will assume that it is true!

2.3 PDF of the jth order statistic
Applying the above lemma to the CDF of X(j) and replacing the x in the integral with a dummy variable,
t, we have

F(j)(x) =
n∑

k=j

(
n

k

)
(F (x))k(1− F (x))n−k =

F (x)∫
0

n!

(j − 1)! (n− j)!
tj−1 (1− t)n−j dt

To find the PDF of X(j), we differentiate the CDF with respect to x and apply the Fundamental Theorem
of Calculus to obtain

f(j)(x) =
d

dx
F(j)(x)

=
d

dx

F (x)∫
0

n!

(j − 1)! (n− j)!
tj−1 (1− t)n−j dt

=
n!

(j − 1)! (n− j)!
(F (x))j−1 (1− F (x))n−j dF (x)

dx

=
n!

(j − 1)! (n− j)!
(F (x))j−1 (1− F (x))n−j f(x)

for x ∈ S, and zero otherwise. An alternative way of interpreting this PDF is that we require exactly j − 1
Xis to be less than or equal to x, exactly n − j Xis to be greater than x, and exactly one Xi equal to x.
The constant out front then arises due to the possible number of partitions that can be made.
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3 Joint distributions of order statistics
3.1 Joint distribution of two order statistics
Suppose we now have two order statistics, X(i) and X(j), from a sample of size n and i < j. Let xi and xj
be the realized values of the ith and jth order statistics, respectively. Then their joint PDF is given by

fX(i), X(j)
(xi, xj) =

n!

(i− 1)! (j − i− 1)! (n− j)!
(F (xi))

i−1 (F (xj)− F (xi))
j−i−1 (1− F (xj))

n−j f(xi) f(xj)

for a < xi < xj < b, and zero otherwise.

Using an interpretation similar to the that of the PDF of a single order statistic, we now require i − 1
elements less than or equal to xi, n− j elements greater than xj , j − i− 1 elements between xi and xj , and
exactly two elements equal to xi and xj .

3.2 Joint distribution of all order statistics
For simplicity, first suppose that we have a random sample of size n = 2. Then the joint distribution of the
order statistics is a transformation of the joint distribution of the unordered elements of the sample using:

min {X1, X2} = X(1) and max {X1, X2} = X(2)

Case 1: X1 = X(1), X2 = X(2)

det (J) =

∣∣∣∣1 0
0 1

∣∣∣∣ = 1

Case 2: X1 = X(2), X2 = X(1)

det (J) =

∣∣∣∣0 1
1 0

∣∣∣∣ = −1

Applying the transformation,

fX(1), X(2)
(x1, x2) = f(x1) · f(x2) · |1| + f(x2) · f(x1) · | − 1|

= 2 · f(x1) · f(x2)

= 2! · f(x1) · f(x2)

for a < x1 < x2 < b, and zero otherwise. For arbitrary n, there will be n! cases to consider and the
determinants of the n! Jacobians will all be ±1.

Thus, the joint distribution of n order statistics is given by:

f(x1, x2, . . . , xn) =

n!∑
i=1

f(x1) · f(x2) · · · f(xn) · | det (Ji)|

= n! · f(x1) · f(x2) · · · f(xn)

for a < x1 < x2 < . . . < xn < b, and zero otherwise. As this is a joint distribution for all n order statistics,
if we require the joint distribution of k < n order statistics, we will need to integrate out the unwanted
variables.
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4 Examples
4.1 Distribution of a minimum of independent exponential RVs
Suppose X1 ∼ Exp(λ1), X2 ∼ Exp(λ2), and X1 ⊥ X2. Let X = min {X1, X2}. Show that X ∼
Exp(λ1 + λ2).

P (X > t) = P (min {X1, X2} > t)

= P (X1 > t, X2 > t)

= P (X1 > t) ·P (X2 > t)

= eλ1t · eλ2t

= e(λ1+λ2)t

Therefore, X ∼ Exp(λ1 + λ2), as desired.

4.2 Distribution of the range: example 1
Given a random sample of size n from a continuous distribution with PDF f and CDF F , define the range
as

R := X(n) −X(1).

Find the CDF and PDF of R.

Assume the joint density of X(1) and X(n) will have support −∞ < x1 < xn < ∞. The region xn − x1 ≤ a
is equivalent to xn ≤ x1 + a.

P (R ≤ a) = P
(
X(n) −X(1) ≤ a

)
=

∫∫
xn−x1≤a

fX(1), X(n)
(x1, xn) dx1 dxn

=

∞∫
−∞

x1+a∫
x1

n!

(n− 2)!
(F (xn)− F (x1))

n−2 f(x1) f(xn) dxn dx1 (∗)

Let y = F (xn)− F (x1) and dy = f(xn) dxn. Then

x1+a∫
x1

(F (xn)− F (x1))
n−2 f(xn) dxn =

F (x1+a)−F (x1)∫
0

yn−2 dy

=
1

n− 1
(F (x1 + a)− F (x1))

n−1

Plugging this result into (∗), we obtain

P (R ≤ a) = n

∞∫
−∞

(F (x1 + a)− F (x1))
n−1 f(x1) dx1
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This equation can be evaluated explicitly only in a few cases. One such case is when the Xis come from a
uniform distribution on (0,1). Then for 0 < a < 1,

P (R ≤ a) = n

1∫
0

(F (x1 + a)− F (x1))
n−1 f(x1) dx1

= n

1−a∫
0

an−1 dx1 + n

1∫
1−a

(1− x1)
n−1 dx1

= n(1− a)an−1 + an

Differentiating with respect to a yields the density

fR(a) = n(n− 1) an−2 (1− a)

=
n!

(n− 2)! 1!
an−2 (1− a)

=
(n− 1 + 2− 1)!

(n− 1− 1)! (2− 1)!
a(n−1)−1 (1− a)2−1

=
Γ(n− 1 + 2)

Γ(n− 1)Γ(2)
a(n−1)−1 (1− a)2−1

=
1

B(n− 1, 2)
a(n−1)−1 (1− a)2−1

We recognize this as the density of the beta distribution with parameters n− 1, 2.

In general, the density of R is found as

fRn(r) = n(n− 1)

∞∫
−∞

(F (u+ r)− F (u))n−2f(u+ r)f(u) du

for r > 0.

4.3 Distribution of the range: example 2
Consider a random sample of size n from an Exp(1) distribution. Determine

(a) fX(1), X(n)
(x1, xn)

fX(1), X(n)
(x1, xn) = n(n− 1)(1− e−xn − (1− e−x1))n−2 e−x1e−xn

= n(n− 1)(e−x1 − e−xn)n−2 e−(x1+xn)

for 0 < x1 < xn < ∞, and zero otherwise.
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(b) fRn(r)

fRn(r) = n(n− 1)

∞∫
0

(
e−u − e−(u+r)

)n−2
e−(2u+r) du

= n(n− 1)

∞∫
0

e−u(n−2) (1− e−r)n−2 e−2u+r du

= n(n− 1)(1− e−r)n−2 e−r

∞∫
0

enu du

= (n− 1)(1− e−r)n−2 e−r

for r > 0, and zero otherwise.

4.4 Conditional expectation of order statistics
Suppose we have a random sample of size n = 3 from Exp(1). Compute E

(
X(3) |X(1) = x

)
.

The joint density of X(1), X(3) is

fX(1), X(3)
(x1, x3) = 3! (e−x1 − e−x3) e−(x1+x3)

for 0 < x1 < x3 < ∞, and zero otherwise.

The conditional distribution is found as:

fX(3) |X(1)=x1
(x3) =

fX(1), X(3)
(x1, x3)

fX(1)
(x1)

=
3!(e−x1 − e−x3) e−(x1+x3)

3e−3x1

= 2(e−x1 − e−x3) e2x1−x3

for 0 < x1 < x3 < ∞.

The conditional expectation is

E
(
X(3) |X(1) = x1

)
=

∞∫
x1

2x3 (e
−x1 − e−x3) e2x1−x3 dx3

Make the substitution: u = x3 − x1, du = dx3.

=

∞∫
0

2(u+ x1)(e
x1 − e−(u+x1)) e2x1−u−x1 du

= 2

∞∫
0

(u+ x1)(1− e−u) e−u du
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= 2

∞∫
0

u(e−u − e−2u) du + 2x1

∞∫
0

e−u − e−2u du

= 2

(
1− 1

2
· 1
2

)
+ 2x1

(
1− 1

2

)

= x1 +
3

2
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