Tutorial 2

October 1, 2020

Question 1

A random variable X takes on values 1, 2, 3, 4 such that

$$
2 \mathbf{P}(X=1)=3 \mathbf{P}(X=2)=\mathbf{P}(X=3)=5 \mathbf{P}(X=4)
$$

Find the probability distribution function and cumulative distribution function of X.

Question 2

A contestant on a quiz show is presented with two questions, labelled 1 and 2, which he is to attempt in whichever order he chooses.

- If he attempts question i first, he will be allowed to proceed to question $j(j \neq i)$ only if his answer to question i is correct.
- If his answer to i is incorrect, he is not allowed to answer question j.

The contestant is to receive V_{i} dollars for correctly answering question $i, i=1,2$. For example, the contestant will receive $V_{1}+V_{2}$ dollars if he answers both questions correctly.

Let $E_{i}, i=1,2$ be the event that the contestant knows the answer to question i, and that the two events are independent. Let $P_{i}, i=1,2$ represent the respective probabilities of these events. In order for the contestant to maximize his expected winnings, which question should he attempt first?

Question 3

(a) A particles moves n steps on a number line. The particle starts at 0 , and at each step moves one unit to the right or the left, with equal probabilities. Assume all steps are independent. Let Y be the particle's position after n steps. Find the PMF of Y.
(b) Using the results from (a), let D be the particle's distance from the origin after n steps. Assume that n is even. Find the PMF of D.

Question 4

(a) If X takes values from $\{0,1,2, \ldots, n\}(n=\infty$ is OK$)$, show that

$$
\mathbf{E}(X)=\sum_{k=1}^{n} \mathbf{P}(X \geq k)
$$

(b) Four dice are rolled. Let M be the minimum of the four numbers. Find $\mathbf{E}(M)$.

