## Tutorial 2

October 1, 2020

## Question 1

A random variable $X$ takes on values $1,2,3,4$ such that

$$
2 \mathbf{P}(X=1)=3 \mathbf{P}(X=2)=\mathbf{P}(X=3)=5 \mathbf{P}(X=4)
$$

Find the probability distribution function and cumulative distribution function of $X$.
Let $\mathbf{P}(X=3)=k$.

$$
\begin{aligned}
& 2 \mathbf{P}(X=1)=k \quad \Rightarrow \quad \mathbf{P}(X=1)=\frac{k}{2} \\
& 3 \mathbf{P}(X=2)=k \quad \Rightarrow \quad \mathbf{P}(X=2)=\frac{k}{3} \\
& 5 \mathbf{P}(X=4)=k \quad \Rightarrow \quad \mathbf{P}(X=4)=\frac{k}{5}
\end{aligned}
$$

We know that:

$$
\sum_{i=1}^{4} p\left(x_{i}\right)=1
$$

Then:

$$
\frac{k}{2}+\frac{k}{3}+k+\frac{k}{5}=1 \quad \Rightarrow \quad k=\frac{30}{61}
$$

We can write the probability distribution function as:

$$
f(x)=\mathbf{P}(X=x)= \begin{cases}15 / 61 & x=1 \\ 10 / 61 & x=2 \\ 30 / 61 & x=3 \\ 6 / 61 & x=4 \\ 0 & \text { otherwise }\end{cases}
$$

The cumulative distribution function can be found as:

$$
F(x)=\mathbf{P}(X \leq x)= \begin{cases}0 & x<1 \\ 15 / 61 & 1 \leq x<2 \\ 25 / 61 & 2 \leq x<3 \\ 55 / 61 & 3 \leq x<4 \\ 1 & x \geq 4\end{cases}
$$

## Question 2

A contestant on a quiz show is presented with two questions, labelled 1 and 2, which he is to attempt in whichever order he chooses.

- If he attempts question $i$ first, he will be allowed to proceed to question $j(j \neq i)$ only if his answer to question $i$ is correct.
- If his answer to $i$ is incorrect, he is not allowed to answer question $j$.

The contestant is to receive $V_{i}$ dollars for correctly answering question $i, i=1,2$. For example, the contestant will receive $V_{1}+V_{2}$ dollars if he answers both questions correctly.

Let $E_{i}, i=1,2$ be the event that the contestant knows the answer to question $i$, and that the two events are independent. Let $P_{i}, i=1,2$ represent the respective probabilities of these events. In order for the contestant to maximize his expected winnings, which question should he attempt first?

If question 1 is attempted first, the winnings will be:

$$
\begin{array}{ccc}
0 & \text { with probability } & 1-P_{1} \\
V_{1} & \text { with probability } & P_{1}\left(1-P_{2}\right) \\
V_{1}+V_{2} & \text { with probability } & P_{1} P_{2}
\end{array}
$$

The expected winnings if question 1 is attempted first are:

$$
V_{1} \cdot P_{1}\left(1-P_{2}\right)+\left(V_{1}+V_{2}\right) \cdot P_{1} P_{2}
$$

If question 2 is attempted first, the winnings will be:

$$
\begin{array}{ccc}
0 & \text { with probability } & 1-P_{2} \\
V_{2} & \text { with probability } & P_{2}\left(1-P_{1}\right) \\
V_{2}+V_{1} & \text { with probability } & P_{2} P_{1}
\end{array}
$$

The expected winnings if question 2 is attempted first are:

$$
V_{2} \cdot P_{2}\left(1-P_{1}\right)+\left(V_{2}+V_{1}\right) \cdot P_{2} P_{1}
$$

The second term of both expected winnings are the same. Therefore question 1 should be attempted first if

$$
V_{1} \cdot P_{1}\left(1-P_{2}\right) \geq V_{2} \cdot P_{2}\left(1-P_{1}\right)
$$

or equivalently,

$$
\frac{V_{1} \cdot P_{1}}{1-P_{1}} \geq \frac{V_{2} \cdot P_{2}}{1-P_{2}}
$$

Example: The player has a 0.60 probability of answering question 1 correctly, worth $\$ 200$. The player has a 0.80 probability of answer question 2 correctly, worth $\$ 100$. Then:

$$
\begin{aligned}
\frac{V_{1} \cdot P_{1}}{1-P_{1}} & \stackrel{?}{\geq} \frac{V_{2} \cdot P_{2}}{1-P_{2}} \\
\frac{200 \cdot 0.60}{0.40} & \stackrel{?}{\geq} \frac{100 \cdot 0.80}{0.20} \\
300 & \nsupseteq 400
\end{aligned}
$$

The player should attempt question 2 first instead.

## Question 3

(a) A particles moves $n$ steps on a number line. The particle starts at 0 , and at each step moves one unit to the right or the left, with equal probabilities. Assume all steps are independent. Let $Y$ be the particle's position after $n$ steps. Find the PMF of $Y$.

Consider each step to be a Bernoulli trial, where right is considered a success and left is considered a failure. If we let the random variable $X$ represent the number of steps the particle takes to the right in $n$ independent Bernoulli trials, then

$$
X \sim \operatorname{Bin}(n, p=1 / 2)
$$

If $X=j$, then the particle has taken $j$ steps to the right and $n-j$ steps to the left, giving a final position of

$$
j-(n-j)=2 j-n
$$

The particle's position after $n$ steps, $Y$, can be represented as a (one-to-one) function of $X$, using $Y=2 X-n$. Since the possible values of $X$ were $\{0,1,2, \ldots, n\}$, the possible values for $Y$ are $\{-n, 2-n, 4-n, \ldots, n\}$. The PMF of $Y$ is

$$
\mathbf{P}(Y=k)=\mathbf{P}(2 X-n=k)=\mathbf{P}(X=(n+k) / 2)=\binom{n}{\frac{n+k}{2}}\left(\frac{1}{2}\right)^{n}
$$

where $k$ is an integer in $\{-n, 2-n, 4-n, \ldots, n\}$, and $n+k$ is even. Otherwise, $\mathbf{P}(Y=k)=0$.
(b) Using the results from (a), let $D$ be the particle's distance from the origin after $n$ steps. Assume that $n$ is even. Find the PMF of $D$.

Let the distance from the origin after $n$ steps, for $n$ even, be $D=|Y| . D$ is not a one-to-one function of $Y$. Although the event $D=0$ is the same as $Y=0$, for $k=2,4, \ldots, n$ we have that

$$
D=k \equiv\{Y=-k\} \cup\{Y=k\}
$$

The PMF of $D$ is:

$$
\begin{aligned}
\mathbf{P}(D & =0)=\binom{n}{\frac{n}{2}}\left(\frac{1}{2}\right)^{n} \\
\mathbf{P}(D=k) & =\mathbf{P}(Y=-k)+\mathbf{P}(Y=k) \\
& =2 \mathbf{P}(Y=k) \\
& =2\binom{n}{\frac{n+k}{2}}\left(\frac{1}{2}\right)^{n}
\end{aligned}
$$

(By symmetry)

## Question 4

(a) If $X$ takes values from $\{0,1,2, \ldots, n\}(n=\infty$ is OK), show that

$$
\mathbf{E}(X)=\sum_{k=1}^{n} \mathbf{P}(X \geq k)
$$

Let $p_{k}$ be shorthand for $\mathbf{P}(X=k)$.

$$
\mathbf{E}(X)=\sum_{k=0}^{n} k \cdot p_{k}
$$

$$
\begin{aligned}
&=\left(0 \cdot p_{0}\right)+\left(1 \cdot p_{1}\right)+\left(2 \cdot p_{2}\right)+\ldots+\left(n \cdot p_{n}\right) \\
& \quad p_{1} \\
&+p_{2} \\
&=+p_{2} \\
&+p_{3} \\
&+p_{3} \\
& \vdots \\
& \vdots \vdots \\
&+p_{3} \\
&+p_{n} \\
&+p_{n} \\
&= \ldots \\
& \mathbf{P}(X \geq 1)+\mathbf{P}(X \geq 2)+\mathbf{P}(X \geq 3)+\ldots+\mathbf{P}(X \geq n) \\
&= \sum_{k=1}^{n} \mathbf{P}(X \geq k)
\end{aligned}
$$

Example with geometric distribution:
If $X \sim \operatorname{Geom}(p)$, we know that $\mathbf{P}(X=k)=p q^{k-1}$ for $k \geq 1(k-1$ failures followed by a success $)$, and $\mathbf{E}(X)=1 / p$.

$$
\begin{aligned}
\mathbf{P}(X \geq k) & =\sum_{j=k}^{\infty} p q^{j-1} \\
& =p\left(q^{k-1}+q^{k+1-1}+q^{k+2-1}+\ldots\right) \\
& =p\left(q^{k-1}+q^{(k-1)+1}+q^{(k-1)+2}+\ldots\right) \\
& =p q^{k-1}\left(q^{0}+q^{1}+q^{2}+\ldots\right) \\
& =p q^{k-1} \sum_{i=0}^{\infty} q^{i} \\
& =\frac{p q^{k-1}}{1-q} \\
& =q^{k-1}
\end{aligned}
$$

$$
(\text { Since } p=1-q)
$$

$$
\mathbf{E}(X)=\sum_{k=1}^{\infty} \mathbf{P}(X \geq k)=\sum_{k=1}^{\infty} q^{k-1}=\sum_{k-1=0}^{\infty} q^{k-1}=\frac{1}{1-q}=\frac{1}{p}
$$

(b) Four dice are rolled. Let $M$ be the minimum of the four numbers. Find $\mathbf{E}(M)$.

Let $X_{k}$ be the number rolled on the $k^{\text {th }}$ die, $k=1,2,3,4$. For $c \in\{1,2, \ldots, 6\}$, we have that

$$
\mathbf{P}\left(X_{k} \geq c\right)=\frac{6-c+1}{6}
$$

Then the probability of the minimum of the four numbers being greater than some $c$ is:

$$
\begin{array}{rlr}
\mathbf{P}(M \geq c) & =\mathbf{P}\left(X_{1} \geq c \cap X_{2} \geq c \cap X_{3} \geq c \cap X_{4} \geq c\right) & \text { (Definition of minimum) } \\
& =\mathbf{P}\left(X_{1} \geq c\right) \cdot \mathbf{P}\left(X_{2} \geq c\right) \cdot \mathbf{P}\left(X_{3} \geq c\right) \cdot \mathbf{P}\left(X_{4} \geq c\right) & \text { (Independence) }
\end{array}
$$

$$
=\left(\frac{6-c+1}{6}\right)^{4}
$$

By the results of (a),

$$
\begin{aligned}
\mathbf{E}(M) & =\sum_{c=1}^{6} \mathbf{P}(M \geq c) \\
& =\left(\frac{6}{6}\right)^{4}+\left(\frac{5}{6}\right)^{4}+\left(\frac{4}{6}\right)^{4}+\left(\frac{3}{6}\right)^{4}+\left(\frac{2}{6}\right)^{4}+\left(\frac{1}{6}\right)^{4} \\
& =\frac{2275}{1296} \approx 1.755
\end{aligned}
$$

