Tutorial 3

October 8, 2020

Question 1

Let N be a Poisson random variable with parameter b, and consider a sequence of N independent Bernoulli trials, each with probability p for success.

Let X be the total number of successes. Find the distribution of X.

$$
\begin{array}{rlr}
\mathbf{P}(X=k) & =\sum_{n=0}^{\infty} \mathbf{P}(X=k \mid N=n) \cdot \mathbf{P}(N=n) & \\
& =\sum_{n=k}^{\infty}\binom{n}{k} p^{k}(1-p)^{n-k} e^{-b} \frac{b^{n}}{n!} & \text { (Law of total probability) } \\
& =\sum_{n=k}^{\infty} \frac{n!p^{k}(1-p)^{n-k} e^{-b} b^{n}}{(n-k)!k!n!} & \text { (Must have } n \geq k \text {) } \\
& =e^{-b} \frac{p^{k}}{k!} \sum_{n=k}^{\infty} \frac{b^{n}(1-p)^{n-k}}{(n-k)!} & \text { (Fxpand binomial coefficient) } \\
& =e^{-b} \frac{b^{k} p^{k}}{k!} \sum_{n=k}^{\infty} \frac{b^{n-k}(1-p)^{n-k}}{(n-k)!} & \\
& \text { (Fancelor } b^{k} \text { out of the sum) } \\
& =e^{-b} \frac{b^{k} p^{k}}{k!} \sum_{n-k=0}^{\infty} \frac{b^{n-k}(1-p)^{n-k}}{(n-k)!} & \\
& \text { (Power series definition of } e^{x} \text {) } \\
& =e^{-b} \frac{b^{k} p^{k}}{k!} e^{b(1-p)} &
\end{array}
$$

We recognize this as the PDF for Poisson $(b p)$. Therefore $X \sim \operatorname{Poisson}(b p)$.

Question 2

A random variable X has PDF:

$$
f(x)= \begin{cases}c x e^{-x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the value of c which makes $f(x)$ a valid PDF.

For $f(x)$ to be a valid PDF, the integral of $f(x)$ over its support must be equal to 1 .

$$
\begin{aligned}
\int_{0}^{\infty} c x e^{-x} d x & =c \int_{0}^{\infty} x e^{-x} d x \\
& =c\left(\lim _{t \rightarrow \infty}-x e^{-x}-\left.e^{-x}\right|_{x=0} ^{x=t}\right) \\
& =c((0-0)-(0-1)) \\
& =c
\end{aligned}
$$

Therefore we have that c must be equal to 1 . Our updated PDF is:

$$
f(x)= \begin{cases}x e^{-x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

(b) Find the CDF of X.

We can obtain the CDF by integrating the PDF from negative infinity up to x, with respect to a dummy variable, t. Denote the CDF by $F(x)$.

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(t) d t \\
& =\int_{0}^{x} t e^{-t} d t \\
& =-t e^{-t}-\left.e^{-t}\right|_{t=0} ^{t=x} \\
& =\left(-x e^{-x}-e^{-x}\right)-(0-1) \\
& =1-e^{-x}(1+x)
\end{aligned}
$$

The full CDF is:

$$
F(x)= \begin{cases}0 & x<0 \\ 1-e^{-x}(1+x) & x>0\end{cases}
$$

Question 3

Consider a random variable, X, with a triangular distribution:

$$
f(x)= \begin{cases}x & 0<x<1 \\ 2-x & 1 \leq x<2 \\ 0 & \text { otherwise }\end{cases}
$$

Find the mean and variance.

$$
\begin{aligned}
\mathbf{E}(X) & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{0}^{1} x^{2} d x+\int_{1}^{2} 2 x-x^{2} d x \\
& =\left.\frac{1}{3} x^{3}\right|_{x=0} ^{x=1}+\left.\left(x^{2}-\frac{1}{3} x^{3}\right)\right|_{x=1} ^{x=2} \\
& =\frac{1}{3}+\left(\left(4-\frac{8}{3}\right)-\left(1-\frac{1}{3}\right)\right) \\
& =1
\end{aligned}
$$

To find the variance we could compute $\mathbf{E}\left((X-\mu)^{2}\right)$, but this integral can get messy. It is easier to use the relationship that

$$
\operatorname{Var}(X)=\mathbf{E}\left(X^{2}\right)-(\mathbf{E}(X))^{2}
$$

and compute $\mathbf{E}\left(X^{2}\right)$ since we already computed $\mathbf{E}(X)$ in the previous step.

$$
\begin{aligned}
\mathbf{E}\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f(x) d x \\
& =\int_{0}^{1} x^{3} d x+\int_{1}^{2} 2 x^{2}-x^{3} d x \\
& =\left.\frac{1}{4} x^{4}\right|_{x=0} ^{x=1}+\left.\left(\frac{2}{3} x^{3}-\frac{1}{4} x^{4}\right)\right|_{x=1} ^{x=2} \\
& =\frac{1}{4}+\left(\left(\frac{16}{3}-\frac{16}{4}\right)-\left(\frac{2}{3}-\frac{1}{4}\right)\right) \\
& =\frac{7}{6}
\end{aligned}
$$

$$
\operatorname{Var}(X)=\mathbf{E}\left(X^{2}\right)-\mathbf{E}(X)^{2}=\frac{7}{6}-(1)^{2}=\frac{1}{6}
$$

Question 4

A random variable, X, has PDF:

$$
f(x)= \begin{cases}x / 2 & 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Find $\mathbf{P}(X>1.5 \mid X>1)$.
First find the CDF.

$$
\begin{gathered}
F(x)=\int_{0}^{x} \frac{t}{2} d t=\left.\frac{t^{2}}{4}\right|_{t=0} ^{t=x}=\frac{x^{2}}{4} \\
F(x)= \begin{cases}0 & x<0 \\
x^{2} / 4 & 0 \leq x \leq 2 \\
1 & x>2\end{cases} \\
\begin{aligned}
\mathbf{P}(X>1.5 \mid X>1) & =\frac{\mathbf{P}(X>1.5 \cap X>1)}{\mathbf{P}(X>1)} \\
& =\frac{\mathbf{P}(X>1.5)}{\mathbf{P}(X>1)} \\
& =\frac{1-\mathbf{P}(X \leq 1.5)}{1-\mathbf{P}(X \leq 1)} \\
& =\frac{1-9 / 16}{1-1 / 4} \\
& =\frac{7}{12} \approx 0.5833
\end{aligned}
\end{gathered}
$$

Alternatively, we could have computed $\mathbf{P}(X>1.5)$ as $\int_{1.5}^{2} f(x) d x$, and similarly with $\mathbf{P}(X>1)$.

Question 5

A stick of length 1 is split at a point U that is uniformly distributed over $(0,1)$. Determine the expected length of the piece that contains the point $p, 0 \leq p \leq 1$.

There are two cases to consider: (a) $U<p$; (b) $U>p$.
Let $L_{p}(U)$ denote the length of the piece containing point p. Then:

$$
L_{p}(U)= \begin{cases}1-U & U<p \\ U & U>p\end{cases}
$$

Quick facts:
(i) The PDF of a $\operatorname{Unif}(0,1)$ random variable is 1
(ii) If U has density denoted by $p(u)$, then

$$
\mathbf{E}(g(U))=\int_{-\infty}^{\infty} g(u) p(u) d u
$$

If $U \sim \operatorname{Unif}(0,1)$, then $p(u)=1$ and the expectation above reduces to

$$
\mathbf{E}(g(U))=\int_{-\infty}^{\infty} g(u) d u
$$

Using the above facts, the expected length of the piece containing point p can be computed as:

$$
\begin{aligned}
\mathbf{E}\left(L_{p}(U)\right) & =\int_{-\infty}^{\infty} L_{p}(u) d u \\
& =\int_{0}^{p}(1-u) d u+\int_{p}^{1} u d u \\
& =\left.\left(u-\frac{u^{2}}{2}\right)\right|_{u=0} ^{u=p}+\left.\frac{1}{2} u^{2}\right|_{u=p} ^{u=1} \\
& =\left(p-\frac{p^{2}}{2}\right)+\left(\frac{1}{2}-\frac{p^{2}}{2}\right) \\
& =\frac{1}{2}+p(1-p)
\end{aligned}
$$

It can be seen that the expected length of the piece containing point p reaches its maximum of $3 / 4$ when $p=1 / 2$, since $p(1-p)$ is at its maximum here.

