Tutorial 4

October 15, 2020

Question 1

Let U_{1} and U_{2} be two independent Uniform $[0,1]$ random variables, and let $X=\min \left(U_{1}, U_{2}\right)$ be the minimum between them. Show that the density of X is

$$
f_{X}(x)=2-2 x, \quad 0 \leq x \leq 1
$$

[Hint: Start by computing $F_{X}(x)=\mathbf{P}(X \leq x)$.]

$$
\begin{aligned}
\mathbf{P}(X \leq x) & =1-\mathbf{P}(X>x) \\
& =1-\mathbf{P}\left(U_{1}>x \cap U_{2}>x\right) \\
& =1-\left(\mathbf{P}\left(U_{1}>x\right) \cdot \mathbf{P}\left(U_{2}>x\right)\right) \\
& =1-(\mathbf{P}(U>x))^{2} \\
& =1-(1-\mathbf{P}(U \leq x))^{2} \\
& =1-(1-x)^{2} \\
& =1-\left(1-2 x+x^{2}\right) \\
& =2 x-x^{2}
\end{aligned}
$$

$$
F_{X}(x)= \begin{cases}0 & x<0 \\ 2 x-x^{2} & 0 \leq x \leq 1 \\ 1 & x>1\end{cases}
$$

$$
f_{X}(x)=\frac{d}{d x} F_{X}(x)
$$

$$
= \begin{cases}2-2 x & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Question 2

A die is rolled 24 times. Let S_{24} represent the sum of the 24 numbers rolled. Using the central limit theorem, approximate $\mathbf{P}\left(S_{24} \geq 100\right)$.
Let X be the outcome of a single roll of a die. Then its expected value is:

$$
\mathbf{E}(X)=\sum_{x=1}^{6} x \cdot p(x)=\frac{1}{6} \sum_{x=1}^{6} x=\frac{1}{6} \cdot \frac{6(6+1)}{2}=\frac{7}{2}=3.5
$$

Similarly,

$$
\mathbf{E}\left(X^{2}\right)=\sum_{x=1}^{6} x^{2} \cdot p(x)=\frac{1}{6} \sum_{x=1}^{6} x^{2}=\frac{1}{6} \cdot \frac{6(6+1)(2(6)+1)}{6}=\frac{91}{6}
$$

The variance is computed as:

$$
\operatorname{Var}(X)=\mathbf{E}\left(X^{2}\right)-(\mathbf{E}(X))^{2}=\frac{91}{6}-(3.5)^{2}=\frac{35}{12}
$$

Let S_{24} represent the sum of the 24 rolled numbers, i.e.

$$
S_{24}=X_{1}+X_{2}+\ldots+X_{24}
$$

Then its expected value is:

$$
\begin{aligned}
\mathbf{E}\left(S_{24}\right) & =\mathbf{E}\left(X_{1}+X_{2}+\ldots+X_{24}\right) \\
& =\mathbf{E}\left(X_{1}\right)+\mathbf{E}\left(X_{2}\right)+\ldots+\mathbf{E}\left(X_{24}\right) \\
& =\sum_{i=1}^{24} \mathbf{E}\left(X_{i}\right) \\
& =24 \cdot \mathbf{E}(X) \\
& =24 \cdot \frac{7}{2} \\
& =84
\end{aligned}
$$

Assuming each roll is independent of one another, its variance is:

$$
\begin{aligned}
\operatorname{Var}\left(S_{24}\right) & =\operatorname{Var}\left(X_{1}+X_{2}+\ldots+X_{24}\right) \\
& =\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\ldots+\operatorname{Var}\left(X_{24}\right) \\
& =\sum_{i=1}^{24} \operatorname{Var}\left(X_{i}\right) \\
& =24 \cdot \operatorname{Var}(X) \\
& =24 \cdot \frac{35}{12} \\
& =70
\end{aligned}
$$

Applying the central limit theorem, let

$$
Z:=\frac{S_{24}-84}{\sqrt{70}} \dot{\sim} N(0,1)
$$

Since we are going from a discrete distribution to a continuous distribution, we need to make a continuity correction. We also note that for a continuous distribution, $\mathbf{P}(X<x)=\mathbf{P}(X \leq x)$.

$$
\begin{aligned}
\mathbf{P}\left(S_{k} \geq 100\right) & \approx \mathbf{P}\left(S_{k} \geq 100-0.5\right) \\
& =\mathbf{P}\left(\frac{S_{24}-84}{\sqrt{70}} \geq \frac{99.5-84}{\sqrt{70}}\right) \\
& =\mathbf{P}\left(Z \geq \frac{15.5}{\sqrt{70}}\right) \\
& =1-\mathbf{P}\left(Z \leq \frac{15.5}{\sqrt{70}}\right) \\
& =0.03196954
\end{aligned}
$$

R> pnorm(15.5/sqrt(70), lower.tail=FALSE)

Compared to the exact answer, 0.031760 , this approximation is quite close. Getting the exact answer requires a bit of work though.

Question 3

A die is rolled k times. Let S_{k} represent the sum of the k numbers rolled. Using the central limit theorem, how large should k be so that $\mathbf{P}\left(S_{k} \geq 100\right)>0.05$?

Let

$$
S_{k}=X_{1}+X_{2}+\ldots+X_{k}
$$

Then

$$
\mathbf{E}\left(S_{k}\right)=k \cdot \frac{7}{2}, \quad \operatorname{Var}\left(S_{k}\right)=k \cdot \frac{35}{12}
$$

Applying the central limit theorem, let

$$
Z:=\frac{S_{k}-(7 k / 2)}{\sqrt{35 k / 12}} \dot{\sim} N(0,1)
$$

$$
\begin{aligned}
\mathbf{P}\left(S_{k} \geq 100\right) & \approx \mathbf{P}\left(S_{k} \geq 99.5\right) \\
& =\mathbf{P}\left(\frac{S_{k}-(7 k / 2)}{\sqrt{35 k / 12}} \geq \frac{99.5-(7 k / 2)}{\sqrt{35 k / 12}}\right) \\
& =\mathbf{P}\left(Z \geq \frac{99.5-(7 k / 2)}{\sqrt{35 k / 12}}\right)
\end{aligned}
$$

$$
\mathbf{P}\left(Z \geq \frac{99.5-(7 k / 2)}{\sqrt{35 k / 12}}\right)>0.05
$$

In other words, we are looking for some quantile such that the area to the right exceeds 0.05 . For this to be possible, the quantile must be less than $\Phi^{-1}(0.95)$. Let $c=\Phi^{-1}(0.95)$.

$$
\begin{aligned}
\frac{99.5-(7 k / 2)}{\sqrt{35 k / 12}} & <c \\
99.5-\frac{7}{2} k & <c \sqrt{\frac{35}{12}} \sqrt{k} \\
-\frac{7}{2} k-c \sqrt{\frac{35}{12}} \sqrt{k}+99.5 & <0
\end{aligned}
$$

Solving the equation, we get that k must be greater than 24.46 (approximately). Since k is discrete, we can round it up to 25 . Therefore k should be greater than 25 so that $\mathbf{P}\left(S_{k} \geq 100\right)>0.05$.

Question 4

Using MGFs, show that the sum of two independent Poisson random variables is a Poisson random variable. What is the parameter of the new random variable?

Let A be a general Poisson distributed random variable with parameter λ. We start by finding the MGF of A.

$$
\begin{aligned}
M(t) & =\mathbf{E}\left(e^{t A}\right) \\
& =\sum_{a=0}^{\infty} e^{t a} \cdot p(a) \\
& =\sum_{a=0}^{\infty} e^{t a} e^{-\lambda} \frac{\lambda^{a}}{a!} \\
& =e^{-\lambda} \sum_{a=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{a}}{a!} \\
& =e^{-\lambda} \cdot e^{\lambda e^{t}} \\
& =e^{\lambda\left(e^{t}-1\right)}, \quad t \in \mathbb{R}
\end{aligned}
$$

Now, let $X \sim \operatorname{Poisson}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poisson}\left(\lambda_{2}\right)$, and $X \perp Y$. Then the MGF for $X+Y$ can be found as:

$$
\begin{aligned}
\mathbf{E}\left(e^{t(X+Y)}\right) & =\mathbf{E}\left(e^{t X+t Y}\right) \\
& =\mathbf{E}\left(e^{t X} \cdot e^{t Y}\right) \\
& =\mathbf{E}\left(e^{t X}\right) \cdot \mathbf{E}\left(e^{t Y}\right) \\
& =e^{\lambda_{1}\left(e^{t}-1\right)} \cdot e^{\lambda_{2}\left(e^{t}-1\right)}
\end{aligned}
$$

(Since $X \perp Y$)
(MGF of a Poisson rv)

$$
\begin{aligned}
& =e^{\lambda_{1}\left(e^{t}-1\right)+\lambda_{2}\left(e^{t}-1\right)} \\
& =e^{\left(\lambda_{1}+\lambda_{2}\right)\left(e^{t}-1\right)}, \quad t \in \mathbb{R}
\end{aligned}
$$

By the uniqueness of MGFs, it follows that

$$
X+Y \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)
$$

Question 5

Using the MGF of the exponential distribution, obtain all the moments of the exponential distribution.
To begin, let us consider the specific case of $X \sim \operatorname{Exp}(\lambda=1)$. Its MGF is

$$
M(t)=\frac{1}{1-t}, \quad t<1
$$

We recognize the above as the formula for the sum of a geometric series. Working backwards, we have:

$$
\begin{equation*}
M(t)=\frac{1}{1-t}=\sum_{n=0}^{\infty} t^{n}=\sum_{n=0}^{\infty} n!\cdot \frac{t^{n}}{n!}, \quad|t|<1 \tag{1}
\end{equation*}
$$

It was shown in lecture that:

$$
\begin{equation*}
M(t)=\mathbf{E}\left(e^{t X}\right)=\mathbf{E}\left(\sum_{n=0}^{\infty} \frac{(t X)^{n}}{n!}\right)=\mathbf{E}\left(\sum_{n=0}^{\infty} \frac{t^{n} X^{n}}{n!}\right)=\sum_{n=0}^{\infty} \mathbf{E}\left(X^{n}\right) \frac{t^{n}}{n!} \tag{2}
\end{equation*}
$$

for t in some open interval about 0 . Matching coefficients in (1) and (2), it follows that $\mathbf{E}\left(X^{n}\right)=n!$ for all $n \geq 0$.

By the properties of the exponential distribution, it is known that if $X \sim \operatorname{Exp}(\lambda)$, for $k>0$:

$$
k X \sim \operatorname{Exp}\left(\frac{\lambda}{k}\right)
$$

Therefore, if $X \sim \operatorname{Exp}(\lambda=1)$, then:

$$
\frac{1}{k} X \sim \operatorname{Exp}(k)
$$

Taking advantage of this, if $X \sim \operatorname{Exp}(\lambda=1)$, we define:

$$
Y:=\frac{X}{\lambda_{Y}} \sim \operatorname{Exp}\left(\lambda_{Y}\right)
$$

It follows that:

$$
\mathbf{E}\left(Y^{n}\right)=\mathbf{E}\left(\frac{X^{n}}{\lambda_{Y}^{n}}\right)=\frac{\mathbf{E}\left(X^{n}\right)}{\lambda_{Y}^{n}}=\frac{n!}{\lambda_{Y}^{n}}
$$

Question 6

Using the MGF of the standard normal distribution, obtain all the moments of the standard normal distribution.

From lecture, it was shown that the MGF of the standard normal is:

$$
M(t)=e^{t^{2} / 2}, \quad t \in \mathbb{R}
$$

Performing a Taylor series expansion of the above, we have:

$$
M(t)=e^{t^{2} / 2}=\sum_{n=0}^{\infty} \frac{\left(t^{2} / 2\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{t^{2 n}}{2^{n} n!}=\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{n} n!} \cdot \frac{t^{2 n}}{(2 n)!}
$$

Matching coefficients once again using:

$$
M(t)=\sum_{n=0}^{\infty} \mathbf{E}\left(X^{n}\right) \frac{t^{n}}{n!},
$$

it follows that:

$$
\mathbf{E}\left(Z^{2 n}\right)=\frac{(2 n)!}{2^{n} n!}
$$

with the odd moments equal to zero due to the symmetry of the normal distribution.
It turns out that

$$
\mathbf{E}\left(Z^{2 n}\right)=\frac{(2 n)!}{2^{n} n!}=(2 n-1)!!
$$

where $(2 n-1)!!$ is the odd skip factorial, $n \geq 1$. For example:

$$
\begin{aligned}
& \mathbf{E}\left(Z^{2}\right)=1 \\
& \mathbf{E}\left(Z^{4}\right)=3 * 1 \\
& \mathbf{E}\left(Z^{6}\right)=5 * 3 * 1
\end{aligned}
$$

Question 7

Let Z be a standard normal random variable. Compute the following probabilities:
(a) $\mathbf{P}(0 \leq Z \leq 2.17)$
(b) $\mathbf{P}(0 \leq Z \leq 1)$
(c) $\mathbf{P}(-2.50 \leq Z \leq 0)$
(d) $\mathbf{P}(-2.50 \leq Z \leq 2.50)$
(e) $\mathbf{P}(Z \leq 1.37)$
(f) $\mathbf{P}(-1.75 \leq Z)$
(g) $\mathbf{P}(-1.50 \leq Z \leq 2.00)$
(h) $\mathbf{P}(1.37 \leq Z \leq 2.50)$
(i) $\mathbf{P}(1.50 \leq Z)$
(j) $\mathbf{P}(|Z| \leq 2.50)$

Question 8

Consider the random sum

$$
X=X_{1}+X_{2}+X_{3}+\ldots+X_{N}
$$

where

$$
X_{i} \stackrel{\mathrm{iid}}{\sim} \operatorname{Exp}(\lambda) \quad \text { and } \quad N \sim \operatorname{Geometric}(p), \quad X_{i} \perp N
$$

Determine the distribution of X by finding its MGF.

$$
\begin{align*}
M(t) & =\mathbf{E}\left(e^{t X}\right) \\
& =\sum_{k=1}^{\infty} \mathbf{E}\left(e^{t X} \mid N=k\right) \cdot \mathbf{P}(N=k) \tag{*}\\
& =\sum_{k=1}^{\infty}\left(\frac{\lambda}{\lambda-t}\right)^{k} \cdot(1-p)^{k-1} \cdot p \\
& =\frac{\lambda p}{\lambda-t} \sum_{k=1}^{\infty}\left(\frac{\lambda}{\lambda-t}\right)^{k-1}(1-p)^{k-1} \\
& =\frac{\lambda p}{\lambda-t} \sum_{k-1=0}^{\infty}\left(\frac{\lambda}{\lambda-t} \cdot(1-p)\right)^{k-1} \\
& =\frac{\lambda p}{\lambda-t} \cdot \frac{1}{1-\frac{\lambda-\lambda p}{\lambda-t}} \\
& =\frac{\lambda p}{\lambda p-t}, \quad t<\lambda p
\end{align*}
$$

(Require that $t<\lambda p$)

By the uniqueness of MGFs, it follows that $X \sim \operatorname{Exp}(\lambda p)$. The property used in $(*)$ is known as the law of total expectation. This will be discussed later on in the course.

