
Tutorial 4

October 15, 2020

Question 1
Let U1 and U2 be two independent Uniform[0, 1] random variables, and let X = min (U1, U2) be the minimum
between them. Show that the density of X is

fX(x) = 2− 2x, 0 ≤ x ≤ 1

[Hint: Start by computing FX(x) = P (X ≤ x).]

P (X ≤ x) = 1−P (X > x)

= 1−P (U1 > x ∩ U2 > x) (Definition of minimum)

= 1− (P (U1 > x) ·P (U2 > x)) (Independence)

= 1− (P (U > x))2 (Identically distributed)

= 1− (1−P (U ≤ x))2

= 1− (1− x)2

= 1− (1− 2x+ x2)

= 2x− x2

FX(x) =


0 x < 0

2x− x2 0 ≤ x ≤ 1

1 x > 1

fX(x) =
d

dx
FX(x)

=

{
2− 2x 0 ≤ x ≤ 1

0 otherwise
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Question 2
A die is rolled 24 times. Let S24 represent the sum of the 24 numbers rolled. Using the central limit theorem,
approximate P (S24 ≥ 100).

Let X be the outcome of a single roll of a die. Then its expected value is:

E (X) =

6∑
x=1

x · p(x) =
1

6

6∑
x=1

x =
1

6
· 6 (6 + 1)

2
=

7

2
= 3.5

Similarly,

E
(
X2
)
=

6∑
x=1

x2 · p(x) =
1

6

6∑
x=1

x2 =
1

6
· 6 (6 + 1) (2(6) + 1)

6
=

91

6

The variance is computed as:

Var (X) = E
(
X2
)
− (E (X))2 =

91

6
− (3.5)2 =

35

12

Let S24 represent the sum of the 24 rolled numbers, i.e.

S24 = X1 +X2 + . . .+X24

Then its expected value is:

E (S24) = E (X1 +X2 + . . .+X24)

= E (X1) +E (X2) + . . .+E (X24)

=
24∑
i=1

E (Xi)

= 24 ·E (X)

= 24 · 7
2

= 84

Assuming each roll is independent of one another, its variance is:

Var (S24) = Var (X1 +X2 + . . .+X24)

= Var (X1) +Var (X2) + . . .+Var (X24)

=

24∑
i=1

Var (Xi)

= 24 ·Var (X)

= 24 · 35
12

= 70
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Applying the central limit theorem, let

Z :=
S24 − 84√

70

·∼ N(0, 1)

Since we are going from a discrete distribution to a continuous distribution, we need to make a continuity
correction. We also note that for a continuous distribution, P (X < x) = P (X ≤ x).

P (Sk ≥ 100) ≈ P (Sk ≥ 100− 0.5)

= P

(
S24 − 84√

70
≥ 99.5− 84√

70

)

= P

(
Z ≥ 15.5√

70

)

= 1−P

(
Z ≤ 15.5√

70

)
= 0.03196954

R> pnorm(15.5/sqrt(70), lower.tail=FALSE)

Compared to the exact answer, 0.031760, this approximation is quite close. Getting the exact answer requires
a bit of work though.

Question 3
A die is rolled k times. Let Sk represent the sum of the k numbers rolled. Using the central limit theorem,
how large should k be so that P (Sk ≥ 100) > 0.05?

Let
Sk = X1 +X2 + . . .+Xk

Then
E (Sk) = k · 7

2
, Var (Sk) = k · 35

12

Applying the central limit theorem, let

Z :=
Sk − (7k/2)√

35k/12

·∼ N(0, 1)

P (Sk ≥ 100) ≈ P (Sk ≥ 99.5)

= P

(
Sk − (7k/2)√

35k/12
≥ 99.5− (7k/2)√

35k/12

)

= P

(
Z ≥ 99.5− (7k/2)√

35k/12

)
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P

(
Z ≥ 99.5− (7k/2)√

35k/12

)
> 0.05

In other words, we are looking for some quantile such that the area to the right exceeds 0.05. For this to be
possible, the quantile must be less than Φ−1(0.95). Let c = Φ−1(0.95).

99.5− (7k/2)√
35k/12

< c

99.5 − 7

2
k < c

√
35

12

√
k

−7

2
k − c

√
35

12

√
k + 99.5 < 0

Solving the equation, we get that k must be greater than 24.46 (approximately). Since k is discrete, we can
round it up to 25. Therefore k should be greater than 25 so that P (Sk ≥ 100) > 0.05.

Question 4
Using MGFs, show that the sum of two independent Poisson random variables is a Poisson random variable.
What is the parameter of the new random variable?

Let A be a general Poisson distributed random variable with parameter λ. We start by finding the MGF of
A.

M(t) = E
(
etA
)

=

∞∑
a=0

eta · p(a)

=
∞∑
a=0

etae−λλ
a

a!

= e−λ
∞∑
a=0

(
λet
)a

a!

= e−λ · eλet

= eλ(e
t−1), t ∈ R

Now, let X ∼ Poisson(λ1) and Y ∼ Poisson(λ2), and X ⊥ Y . Then the MGF for X + Y can be found as:

E
(
et(X+Y )

)
= E

(
etX+tY

)
= E

(
etX · etY

)
= E

(
etX
)
·E
(
etY
)

(Since X ⊥ Y )

= eλ1(et−1) · eλ2(et−1) (MGF of a Poisson rv)
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= eλ1(et−1)+λ2(et−1)

= e(λ1+λ2)(et−1), t ∈ R

By the uniqueness of MGFs, it follows that

X + Y ∼ Poisson(λ1 + λ2)

Question 5
Using the MGF of the exponential distribution, obtain all the moments of the exponential distribution.

To begin, let us consider the specific case of X ∼ Exp(λ = 1). Its MGF is

M(t) =
1

1− t
, t < 1

We recognize the above as the formula for the sum of a geometric series. Working backwards, we have:

M(t) =
1

1− t
=

∞∑
n=0

tn =

∞∑
n=0

n! · t
n

n!
, |t| < 1 (1)

It was shown in lecture that:

M(t) = E
(
etX
)
= E

( ∞∑
n=0

(tX)n

n!

)
= E

( ∞∑
n=0

tnXn

n!

)
=

∞∑
n=0

E (Xn)
tn

n!
, (2)

for t in some open interval about 0. Matching coefficients in (1) and (2), it follows that E (Xn) = n! for all
n ≥ 0.

By the properties of the exponential distribution, it is known that if X ∼ Exp(λ), for k > 0:

kX ∼ Exp
(
λ

k

)

Therefore, if X ∼ Exp(λ = 1), then:

1

k
X ∼ Exp (k)

Taking advantage of this, if X ∼ Exp(λ = 1), we define:

Y :=
X

λY
∼ Exp(λY )

It follows that:

E (Y n) = E

(
Xn

λn
Y

)
=

E (Xn)

λn
Y

=
n!

λn
Y
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Question 6
Using the MGF of the standard normal distribution, obtain all the moments of the standard normal distri-
bution.

From lecture, it was shown that the MGF of the standard normal is:

M(t) = et
2/2, t ∈ R

Performing a Taylor series expansion of the above, we have:

M(t) = et
2/2 =

∞∑
n=0

(t2/2)n

n!
=

∞∑
n=0

t2n

2n n!
=

∞∑
n=0

(2n)!

2n n!
· t2n

(2n)!

Matching coefficients once again using:

M(t) =
∞∑
n=0

E (Xn)
tn

n!
,

it follows that:

E
(
Z2n

)
=

(2n)!

2n n!

with the odd moments equal to zero due to the symmetry of the normal distribution.

It turns out that

E
(
Z2n

)
=

(2n)!

2n n!
= (2n− 1)!!

where (2n− 1)!! is the odd skip factorial, n ≥ 1. For example:

E
(
Z2
)
= 1

E
(
Z4
)
= 3 ∗ 1

E
(
Z6
)
= 5 ∗ 3 ∗ 1
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Question 7
Let Z be a standard normal random variable. Compute the following probabilities:

(a) P (0 ≤ Z ≤ 2.17)

(b) P (0 ≤ Z ≤ 1)

(c) P (−2.50 ≤ Z ≤ 0)

(d) P (−2.50 ≤ Z ≤ 2.50)

(e) P (Z ≤ 1.37)

(f) P (−1.75 ≤ Z)

(g) P (−1.50 ≤ Z ≤ 2.00)

(h) P (1.37 ≤ Z ≤ 2.50)

(i) P (1.50 ≤ Z)

(j) P (|Z| ≤ 2.50)

Question 8
Consider the random sum

X = X1 +X2 +X3 + . . .+XN

where
Xi

iid∼ Exp(λ) and N ∼ Geometric(p), Xi ⊥ N

Determine the distribution of X by finding its MGF.
M(t) = E

(
etX
)

=

∞∑
k=1

E
(
etX |N = k

)
·P (N = k) (∗)

=
∞∑
k=1

(
λ

λ− t

)k

· (1− p)k−1 · p

=
λ p

λ− t

∞∑
k=1

(
λ

λ− t

)k−1

(1− p)k−1

=
λ p

λ− t

∞∑
k−1=0

(
λ

λ− t
· (1− p)

)k−1

=
λ p

λ− t
· 1

1− λ−λp
λ−t

(Require that t < λp)

=
λp

λp− t
, t < λp

By the uniqueness of MGFs, it follows that X ∼ Exp(λp). The property used in (∗) is known as the law
of total expectation. This will be discussed later on in the course.
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