Tutorial 5

October 22, 2020

Question 1

A discrete random variable N is uniformly distributed on $\{1,2,3, \ldots, 10\}$.
Let X be the indicator of the event $\{N \leq 5\}$.
Let Y be the indicator of the event $\{N$ is even $\}$.
(a) Are X and Y independent?
(b) Find $\mathbf{E}\left((X+Y)^{2}\right)$.

Question 2

13 cards are drawn at random without replacement from an ordinary deck of playing cards. If X is the number of spades in these 13 cards, find the PMF of X. If, in addition, Y is the number of hearts in these 13 cards, find the probability $\mathbf{P}(X=2, Y=5)$. What is the joint PMF of X and Y ?

Question 3

Consider the multinomial distribution:

- $m \geq 2$ categories
- $n \geq 1$ items chosen at random, with replacement
- $p_{k}=\mathbf{P}$ (Item of type k chosen), $k=1, \ldots, m$
- $X_{k}=$ Number of type k chosen, $k=1, \ldots, m$
(a) Compute $\mathbf{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{m}=x_{m}\right)$.
(b) Find the marginal distribution of X_{k} for each k. Are X_{i} and X_{j} independent?

Question 4

Let $\left(X_{1}, X_{2}, X_{3}\right) \sim \operatorname{Multi}\left(n, p_{1}, p_{2}, p_{3}\right)$. Find the conditional distribution of X_{1} given that $X_{3}=x_{3}$. Intuitively, we expect that

$$
X_{1} \left\lvert\, X_{3}=x_{3} \sim \operatorname{Binomial}\left(n-x_{3}, \frac{p_{1}}{p_{1}+p_{2}}\right)\right.
$$

Question 5

Suppose $X \sim \operatorname{Bin}(N, p)$, where the number of trials, N, is also a random variable (but independent of the trials themselves). Then conditioned on the fact that $N=n$, the number of successes, X, would have distribution $\operatorname{Bin}(n, p)$. What can be said about the unconditional distribution of X, in particular the case when N is a Poisson random variable?

Question 6

Following the setup of the previous question, let $Y=N-X$ represent the number of failures. It is implied that Y has distribution Poisson $(\lambda \cdot(1-p))$. Show that X and Y are independent. [Note that this is strongly due to the Poisson distribution of N, and does not happen otherwise (i.e. with deterministic N).]

