Tutorial 5

October 22, 2020

Question 1

A discrete random variable N is uniformly distributed on $\{1,2,3, \ldots, 10\}$.
Let X be the indicator of the event $\{N \leq 5\}$.
Let Y be the indicator of the event $\{N$ is even $\}$.
(a) Are X and Y independent?

$$
X=\left\{\begin{array}{ll}
1 & N \leq 5 \\
0 & \text { otherwise }
\end{array} \quad Y= \begin{cases}1 & N \text { even } \\
0 & \text { otherwise }\end{cases}\right.
$$

We can check for independence of X and Y by checking

$$
\begin{aligned}
\mathbf{P}(X=1 \cap Y=1) & \stackrel{?}{=} \mathbf{P}(X=1) \cdot \mathbf{P}(Y=1) \\
\mathbf{P}(X=1) & =\mathbf{P}(N \leq 5) \\
& =\frac{5}{10} \\
\mathbf{P}(Y=1) & =\mathbf{P}(N \text { even }) \\
& =\frac{5}{10} \\
\mathbf{P}(X=1 \cap Y=1) & =\mathbf{P}(N \leq 5 \cap N \text { even }) \\
& =\frac{2}{10}
\end{aligned}
$$

Since $\mathbf{P}(X=1 \cap Y=1) \neq \mathbf{P}(X=1) \cdot \mathbf{P}(Y=1), X$ and Y are not independent.
(b) Find $\mathbf{E}\left((X+Y)^{2}\right)$.

First note that

$$
X Y= \begin{cases}1 & N \leq 5 \cap N \text { even } \\ 0 & \text { otherwise }\end{cases}
$$

It follows that

$$
\begin{aligned}
\mathbf{E}(X Y) & =1 \cdot \mathbf{P}(N \leq 5 \cap N \text { even })+0 \cdot \mathbf{P}\left((N \leq 5 \cap N \text { even })^{c}\right) \\
& =\mathbf{P}(N \leq 5 \cap N \text { even })
\end{aligned}
$$

It should also be noted that the square of an indicator variable is identical to the original indicator variable.

$$
\begin{aligned}
\mathbf{E}\left((X+Y)^{2}\right) & =\mathbf{E}\left(X^{2}+2 X Y+Y^{2}\right) \\
& =\mathbf{E}\left(X^{2}\right)+2 \mathbf{E}(X Y)+\mathbf{E}\left(Y^{2}\right) \\
& =\mathbf{E}(X)+2 \mathbf{E}(X Y)+\mathbf{E}(Y) \\
& =\mathbf{P}(N \leq 5)+2 \mathbf{P}(N \leq 5 \cap N \text { even })+\mathbf{P}(N \text { even }) \\
& =\frac{5}{10}+2\left(\frac{2}{10}\right)+\frac{5}{10} \\
& =\frac{14}{10}=1.4
\end{aligned}
$$

Question 2

13 cards are drawn at random without replacement from an ordinary deck of playing cards. If X is the number of spades in these 13 cards, find the PMF of X. If, in addition, Y is the number of hearts in these 13 cards, find the probability $\mathbf{P}(X=2, Y=5)$. What is the joint PMF of X and Y ?

Let X be the number of spades in the 13 cards drawn at random without replacement from an ordinary deck of 52 cards. As there are 13 spades and 39 non-spades in an ordinary deck, the PMF of X is

$$
\mathbf{P}(X=x)= \begin{cases}\frac{\binom{13}{x}\binom{39}{13-x}}{\binom{52}{13}} & 0 \leq x \leq 13 \\ 0 & \text { otherwise }\end{cases}
$$

Now, let Y be the number of hearts contained in these 13 cards. There are 13 hearts in an ordinary deck, leaving 26 cards that are non-spade and non-heart. The joint probability mass function is

$$
\mathbf{P}(X=x, Y=y)= \begin{cases}\frac{\binom{13}{x}\binom{13}{y}\binom{26}{13-x-y}}{\binom{52}{13}} & 0 \leq x \leq 13,0 \leq y \leq 13-x \\ 0 & \text { otherwise }\end{cases}
$$

for $x, y \in \mathbb{Z}$.
The desired probability is computed as:

$$
\mathbf{P}(X=2, Y=5)=\frac{\binom{13}{2}\binom{13}{5}\binom{26}{13-7}}{\binom{52}{13}}
$$

$$
\begin{aligned}
& =\frac{\frac{13!}{2!11!} \frac{13!}{5!8!} \frac{26!}{6!20!}}{\frac{52!}{13!39!}} \\
& =3.647 \times 10^{-7}
\end{aligned}
$$

Question 3

Consider the multinomial distribution:

- $m \geq 2$ categories
- $n \geq 1$ items chosen at random, with replacement
- $p_{k}=\mathbf{P}$ (Item of type k chosen), $k=1, \ldots, m$
- $X_{k}=$ Number of type k chosen, $k=1, \ldots, m$
(a) Compute $\mathbf{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{m}=x_{m}\right)$.

Computing this probability is equivalent to finding the joint PMF.

$$
\begin{aligned}
& \mathbf{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{m}=x_{m}\right) \\
= & \binom{n}{x_{1}}\binom{n-x_{1}}{x_{2}} \cdots\binom{n-x_{1}-\ldots-x_{m-1}}{x_{m}} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{m}^{x_{m}} \\
= & \frac{n!}{x_{1}!x_{2}!\cdots x_{m}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{m}^{x_{m}}
\end{aligned}
$$

provided that $\sum_{i=1}^{m} x_{i}=n$.
The full form of the joint PMF is:

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}\right)= \begin{cases}\frac{n!}{x_{1}!x_{2}!\cdots x_{m}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{m}^{x_{m}} & \sum_{i=1}^{m} x_{i}=n \\ 0 & \text { otherwise }\end{cases}
$$

(b) Find the marginal distribution of X_{k} for each k. Are X_{i} and X_{j} independent?

Intuitively, we expect that X_{k} will have a binomial distribution with parameters $\left(n, p_{k}\right)$. This can be shown formally. Without loss of generality, take $k=1$. We know that to find the marginal distribution of X_{1}, we will need to sum over everything except X_{1}, i.e. X_{2} through X_{m}.

$$
\begin{aligned}
p_{X_{1}}\left(x_{1}\right) & =\sum_{\substack{x_{k} \\
2 \leq k \leq m}} \frac{n!}{x_{1}!x_{2}!\cdots x_{m}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{m}^{x_{m}} \\
& =\sum_{\substack{x_{k} \\
2 \leq k \leq m}} \frac{n!}{\left(n-x_{1}\right)!x_{1}!} \cdot \frac{\left(n-x_{1}\right)!}{x_{2}!x_{3}!\cdots x_{m}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{m}^{x_{m}} \\
& =\frac{n!}{\left(n-x_{1}\right)!x_{1}!} p_{1}^{x_{1}} \sum_{\substack{x_{k} \leq m}} \frac{\left(n-x_{1}\right)!}{x_{2}!x_{3}!\cdots x_{m}!} p_{2}^{x_{2}} p_{3}^{x_{3}} \cdots p_{m}^{x_{m}} \\
& =\binom{n}{x_{1}} p_{1}^{x_{1}}\left(p_{2}+p_{3}+\ldots+p_{m}\right)^{n-x_{1}} \\
& =\binom{n}{x_{1}} p_{1}^{x_{1}}\left(1-p_{1}\right)^{n-x_{1}}
\end{aligned}
$$

Thus we have

$$
p_{X_{1}}\left(x_{1}\right)= \begin{cases}\binom{n}{x_{1}} p_{1}^{x_{1}}\left(1-p_{1}\right)^{n-x_{1}} & 0 \leq x_{1} \leq n \\ 0 & \text { otherwise }\end{cases}
$$

Iterating through the remaining $k=2, \ldots m$, it can be shown that each X_{k} will have a binomial distribution with parameters $\left(n, p_{k}\right)$.

While the results of the individual trials still remain independent, X_{i} will not be independent of X_{j} since

$$
\mathbf{P}\left(X_{i}=n, X_{j}=n\right)=0 \neq \mathbf{P}\left(X_{i}=n\right) \cdot \mathbf{P}\left(X_{j}=n\right)
$$

Question 4

Let $\left(X_{1}, X_{2}, X_{3}\right) \sim \operatorname{Multi}\left(n, p_{1}, p_{2}, p_{3}\right)$. Find the conditional distribution of X_{1} given that $X_{3}=x_{3}$. Intuitively, we expect that

$$
\begin{aligned}
X_{1} \mid X_{3} & =x_{3} \sim \operatorname{Binomial}\left(n-x_{3}, \frac{p_{1}}{p_{1}+p_{2}}\right) \\
\mathbf{P}\left(X_{1} \mid X_{3}=x_{3}\right) & =\frac{\mathbf{P}\left(X_{1}=x_{1}, X_{3}=x_{3}\right)}{\mathbf{P}\left(X_{3}=x_{3}\right)} \\
& =\frac{\mathbf{P}\left(X_{1}=x_{1}, X_{2}=n-x_{1}-x_{3}, X_{3}=x_{3}\right)}{\mathbf{P}\left(X_{3}=x_{3}\right)} \\
& =\frac{\frac{n!}{x_{1}!\left(n-x_{1}-x_{3}\right)!x_{3}!} p_{1}^{x_{1}} p_{2}^{n-x_{1}-x_{3}} p_{3}^{x_{3}}}{\frac{n!}{\left(n-x_{3}\right)!x_{3}!} p_{3}^{x_{3}}\left(1-p_{3}\right)^{n-x_{3}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(n-x_{3}\right)!}{\left(n-x_{1}-x_{3}\right)!x_{1}!} \frac{p_{1}^{x_{1}} p_{2}^{x_{2}}}{\left(p_{1}+p_{2}\right)^{x_{1}+x_{2}}} \\
& =\binom{n-x_{3}}{x_{1}}\left(\frac{p_{1}}{p_{1}+p_{2}}\right)^{x_{1}}\left(\frac{p_{2}}{p_{1}+p_{2}}\right)^{x_{2}} \\
& =\binom{n-x_{3}}{x_{1}}\left(\frac{p_{1}}{p_{1}+p_{2}}\right)^{x_{1}}\left(\frac{p_{2}}{p_{1}+p_{2}}\right)^{n-x_{3}-x_{1}}
\end{aligned}
$$

for $0 \leq x_{1} \leq n-x_{3}$, and zero elsewhere.
As expected,

$$
X_{1} \left\lvert\, X_{3}=x_{3} \sim \operatorname{Binomial}\left(n-x_{3}, \frac{p_{1}}{p_{1}+p_{2}}\right)\right.
$$

Question 5

Suppose $X \sim \operatorname{Bin}(N, p)$, where the number of trials, N, is also a random variable (but independent of the trials themselves). Then conditioned on the fact that $N=n$, the number of successes, X, would have distribution $\operatorname{Bin}(n, p)$. What can be said about the unconditional distribution of X, in particular the case when N is a Poisson random variable?

This is actually the exact same question as Tutorial 3 Question 1, but worded slightly differently... We saw in Tutorial 3 Question 1 that if

$$
N \sim \operatorname{Poisson}(\lambda)
$$

and the conditional distribution of $X \mid N=n$ was

$$
X \mid N=n \sim \operatorname{Binomial}(n, p)
$$

then applying the law of total probability, the unconditional distribution of X was

$$
X \sim \operatorname{Poisson}(\lambda p)
$$

Question 6

Following the setup of the previous question, let $Y=N-X$ represent the number of failures. It is implied that Y has (unconditional) distribution Poisson $(\lambda \cdot(1-p))$. Show that X and Y are independent. [Note that this is strongly due to the Poisson distribution of N, and does not happen otherwise (i.e. with deterministic $N)$.
We can show that X and Y are independent by finding their joint PMF. Before beginning, we recall that

$$
\begin{gathered}
X \mid N=n \sim \operatorname{Binomial}(n, p) \\
Y \mid N=n \sim \operatorname{Binomial}(n,(1-p))
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{P}(X=x, Y=y) & =\mathbf{P}(X=x, Y=y \mid N=n) \cdot \mathbf{P}(N=n) \\
& =\mathbf{P}(X=x, Y=y \mid N=x+y) \cdot \mathbf{P}(N=x+y) \\
& =\frac{(x+y)!}{x!y!} p^{x}(1-p)^{y} \cdot e^{-\lambda} \frac{\lambda^{x+y}}{(x+y)!} \\
& =e^{-\lambda} \cdot \frac{\lambda^{x} p^{x}}{x!} \cdot \frac{\lambda^{y}(1-p)^{y}}{y!} \\
& =e^{-\lambda+\lambda p-\lambda p} \cdot \frac{(\lambda p)^{x}}{x!} \cdot \frac{(\lambda(1-p))^{y}}{y!} \\
& =e^{-\lambda p-\lambda(1-p)} \cdot \frac{(\lambda p)^{x}}{x!} \cdot \frac{(\lambda(1-p))^{y}}{y!} \\
& =e^{-\lambda p} \frac{(\lambda p)^{x}}{x!} \cdot e^{-\lambda(1-p)} \frac{(\lambda(1-p))^{y}}{y!}
\end{aligned}
$$

for $x \geq 0, y \geq 0$, and zero otherwise.

Since the joint PMF of X and Y is a product of their (unconditional) marginal PMFs, X and Y are independent.

