Tutorial 6

November 5, 2020

Question 1

Determine the value of C such that:

$$
f(x, y)= \begin{cases}C(x+y) & 0<x<3, \quad x<y<x+2 \\ 0 & \text { otherwise }\end{cases}
$$

is a valid joint PDF. Then compute the following:
(a) $\mathbf{P}(X<1, Y<2)$
(b) $\mathbf{P}(Y>2)$
(c) $\mathbf{E}(X)$

Question 2

Let X and Y be independent $N(0,1)$ distributed random variables. Show that $X+Y$ and $X-Y$ are independent $N(0,2)$ distributed random variables.

Question 3

The joint density of X and Y is given by:

$$
f(x, y)= \begin{cases}e^{-(x+y)} & 0<x<\infty, \quad 0<y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Find the density of the random variable X / Y.

Question 4

The joint PDF of X and Y is given by:

$$
f(x, y)= \begin{cases}e^{-(x+y)} & x>0, \quad y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find the PDF of $U=\frac{X+Y}{2}$.

