Tutorial 7

November 12, 2020

Question 1

Let X and Y be independent $N(0,1)$ distributed random variables. Show that $X+Y$ and $X-Y$ are independent $N(0,2)$ distributed random variables.

Let $U=X+Y$ and $V=X-Y$. Solving for X and Y, we obtain:

$$
X=\frac{U+V}{2} \quad Y=\frac{U-V}{2}
$$

The Jacobian of this transformation is:

$$
\begin{gathered}
\mathbf{J}=\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right] \\
\operatorname{det}(\mathbf{J})=\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=-\frac{1}{2}, \quad|\operatorname{det}(\mathbf{J})|=\frac{1}{2}
\end{gathered}
$$

The joint density of U and V can be found as:

$$
\begin{aligned}
& f_{U, V}(u, v)=f_{X, Y}\left(\frac{u+v}{2}, \frac{u-v}{2}\right) \cdot|\operatorname{det}(\mathbf{J})| \\
&=f_{X}\left(\frac{u+v}{2}\right) \cdot f_{Y}\left(\frac{u-v}{2}\right) \cdot|\operatorname{det}(\mathbf{J})| \\
&=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left(\frac{u+v}{2}\right)^{2}\right\} \cdot \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left(\frac{u-v}{2}\right)^{2}\right\} \cdot \frac{1}{2} \\
&=\frac{1}{\sqrt{2 \pi \cdot 2}} \frac{1}{\sqrt{2 \pi \cdot 2}} \exp \left\{\left(-\frac{1}{2}\right)\left(\frac{u^{2}+2 u v+v^{2}}{2^{2}}+\frac{u^{2}-2 u v+v^{2}}{2^{2}}\right)\right\} \\
&=\frac{1}{\sqrt{2 \pi \cdot 2}} \frac{1}{\sqrt{2 \pi \cdot 2}} \exp \left\{-\frac{1}{2}\left(\frac{u^{2}}{2}\right)-\frac{1}{2}\left(\frac{v^{2}}{2}\right)\right\} \\
&=\frac{1}{\sqrt{2 \pi \cdot 2}} \exp \left\{-\frac{1}{2}\left(\frac{u^{2}}{2}\right)\right\} \cdot \frac{1}{\sqrt{2 \pi \cdot 2}} \exp \left\{-\frac{1}{2}\left(\frac{v^{2}}{2}\right)\right\} \\
& \text { for }-\infty<u<\infty \text { and }-\infty<v<\infty .
\end{aligned}
$$

Based on the form of the PDF we can conclude that:

- $U=X+Y \sim N(0,2)$
- $V=X-Y \sim N(0,2)$
- $U \perp V$

By the properties of the normal distribution, we already knew that U and V would have the distributions above. The key point of this exercise was to show that U and V would also be independent.

Question 2

The joint PDF of X and Y is given by:

$$
f(x, y)= \begin{cases}e^{-(x+y)} & x>0, \quad y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find the PDF of $U=\frac{X+Y}{2}$.

$$
\text { Let } U=\frac{X+Y}{2} \quad \text { and } \quad V=Y
$$

Then $X=2 U-V$ and $Y=V$.

$$
\begin{gathered}
\mathbf{J}=\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right]=\left[\begin{array}{rr}
2 & -1 \\
0 & 1
\end{array}\right] \\
\operatorname{det}(\mathbf{J})=(2)(1)-(0)(-1)=2, \quad|\operatorname{det}(\mathbf{J})|=2
\end{gathered}
$$

The joint PDF of U, V is:

$$
\begin{aligned}
f_{U, V}(u, v) & =f_{X, Y}(2 u-v, v) \cdot|\operatorname{det}(\mathbf{J})| \\
& =e^{-(2 u-v+v)} \cdot 2 \\
& =2 e^{-2 u}
\end{aligned}
$$

What is the support?

$$
\left.\begin{array}{c}
x>0 \Rightarrow 2 u-v>0 \quad \Rightarrow \quad 2 u>v \\
2 u>0 \Rightarrow \quad y>0 \quad v>0
\end{array}\right] \begin{array}{ll}
\Rightarrow \quad \text { and } \quad 0<v<2 u
\end{array}, \begin{array}{ll}
2 e^{-2 u} & u>0, \quad 0<v<2 u \\
0 & \text { otherwise }
\end{array}
$$

To find the marginal distribution of U, we should integrate with respect to V.

$$
f_{U}(u)=\int_{0}^{2 u} 2 e^{-2 u} d v=4 u e^{-2 u}
$$

for $u>0$, and zero otherwise.

Question 3

Suppose that two random variables X_{1} and X_{2} have the following joint distribution:

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}4 x_{1} x_{2} & 0<x_{1}<1, \quad 0<x_{2}<1 \\ 0 & \text { otherwise }\end{cases}
$$

Determine the joint pdf of the new random variables

$$
Y_{1}=\frac{X_{1}}{X_{2}} \quad Y_{2}=X_{1} X_{2}
$$

What is the marginal density of Y_{1} ?

$$
\begin{aligned}
& Y_{1} Y_{2}=\frac{X_{1}}{X_{2}} X_{1} X_{2}=X_{1}^{2} \Rightarrow X_{1}=\left(Y_{1} Y_{2}\right)^{\frac{1}{2}}=Y_{1}^{\frac{1}{2}} Y_{2}^{\frac{1}{2}} \\
& \frac{Y_{2}}{Y_{1}}=\frac{X_{1} X_{2}}{\frac{X_{1}}{X_{2}}}=X_{2}^{2} \Rightarrow \quad X_{2}=\left(\frac{Y_{2}}{Y_{1}}\right)^{\frac{1}{2}}=Y_{1}^{-\frac{1}{2}} Y_{2}^{\frac{1}{2}} \\
& \mathbf{J}= {\left[\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right] } \\
&=\left[\begin{array}{cc}
\frac{1}{2} y_{1}^{-\frac{1}{2}} y_{2}^{\frac{1}{2}} & \frac{1}{2} y_{1}^{\frac{1}{2}} y_{2}^{-\frac{1}{2}} \\
-\frac{1}{2} y_{1}^{-\frac{3}{2}} y_{2}^{\frac{1}{2}} & \frac{1}{2} y_{1}^{-\frac{1}{2}} y_{2}^{-\frac{1}{2}}
\end{array}\right] \\
&=\left[\begin{array}{cc}
\frac{1}{2}\left(\frac{y_{2}}{y_{1}}\right)^{\frac{1}{2}} & \frac{1}{2}\left(\frac{y_{1}}{y_{2}}\right)^{\frac{1}{2}} \\
-\frac{1}{2}\left(\frac{y_{2}}{y_{1}^{3}}\right)^{\frac{1}{2}} & \frac{1}{2}\left(\frac{1}{y_{1} y_{2}}\right)^{\frac{1}{2}}
\end{array}\right] \\
& \operatorname{det}(\mathbf{J})=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{y_{2}}{y_{1}}\right)^{\frac{1}{2}}\left(\frac{1}{y_{1} y_{2}}\right)^{\frac{1}{2}}-\left(-\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)\left(\frac{y_{2}}{y_{1}^{3}}\right)^{\frac{1}{2}}\left(\frac{y_{1}}{y_{2}}\right)^{\frac{1}{2}} \\
&=\frac{1}{4} \cdot \frac{1}{y_{1}}+\frac{1}{4} \cdot \frac{1}{y_{1}} \\
&=\frac{1}{2 y_{1}}
\end{aligned}
$$

What is the new support?

$$
x_{1}>0 \quad \Rightarrow \quad\left(y_{1} y_{2}\right)^{\frac{1}{2}}>0
$$

This means that either $y_{1}, y_{2}>0$, or $y_{1}, y_{2}<0$. But $y_{1}, y_{2} \nless 0$ since x_{1} and x_{2} were both positive. So it must be that

$$
\begin{equation*}
y_{1}>0 \quad \text { and } \quad y_{2}>0 \tag{*}
\end{equation*}
$$

$$
x_{1}<1 \quad \Rightarrow \quad\left(y_{1} y_{2}\right)^{\frac{1}{2}}<1 \quad \Rightarrow \quad y_{2}<\frac{1}{y_{1}}
$$

$$
x_{2}>0 \Rightarrow\left(\frac{y_{2}}{y_{1}}\right)^{\frac{1}{2}}>0
$$

By the same reasoning as $(*)$, it must be that

$$
y_{1}>0 \quad \text { and } \quad y_{2}>0
$$

$$
x_{2}<1 \Rightarrow\left(\frac{y_{2}}{y_{1}}\right)^{\frac{1}{2}}<1 \quad \Rightarrow \quad y_{2}<y_{1}
$$

Therefore, the new support is:

$$
\mathcal{T}=\left\{\left(y_{1}, y_{2}\right): y_{1}>0, \quad 0<y_{2}<\min \left\{y_{1}, \frac{1}{y_{1}}\right\}\right\}
$$

The new joint PDF is:

$$
\begin{aligned}
g\left(y_{1}, y_{2}\right) & =f\left(\left(y_{1} y_{2}\right)^{\frac{1}{2}},\left(\frac{y_{2}}{y_{1}}\right)^{\frac{1}{2}}\right) \cdot|\operatorname{det}(\mathbf{J})| \\
& =4 \cdot y_{2} \cdot\left|\frac{1}{2 y_{1}}\right| \\
& =2\left(\frac{y_{2}}{y_{1}}\right)
\end{aligned}
$$

(Since $y_{1}>0$)
for $\left(y_{1}, y_{2}\right) \in \mathcal{T}$, and zero otherwise.
To find the marginal density of Y_{1}, we should integrate out Y_{2}.

$$
\begin{aligned}
g\left(y_{1}\right) & = \begin{cases}\int_{0}^{y_{1}} 2\left(\frac{y_{2}}{y_{1}}\right) d y_{2} & 0<y_{1}<1 \\
\int_{0}^{1 / y_{1}} 2\left(\frac{y_{2}}{y_{1}}\right) d y_{2} & y_{1} \geq 1\end{cases} \\
& = \begin{cases}y_{1} & 0<y_{1}<1 \\
\frac{1}{y_{1}^{3}} & y_{1} \geq 1\end{cases}
\end{aligned}
$$

(and zero otherwise.)

Question 4

Continuing from Question 3, find the marginal of

$$
Z_{1}=\frac{X_{1}}{X_{2}}
$$

by first transforming to Z_{1} as above, and $Z_{2}=X_{1}$, and then integrating z_{2} out of the joint pdf.

$$
\begin{gathered}
X_{1}=Z_{2} \\
X_{2}=\frac{X_{1}}{Z_{1}}=\frac{Z_{2}}{Z_{1}}=Z_{1}^{-1} Z_{2} \\
\mathbf{J}=\left[\begin{array}{cc}
\frac{\partial x_{1}}{\partial z_{1}} & \frac{\partial x_{1}}{\partial z_{2}} \\
\frac{\partial x_{2}}{\partial z_{1}} & \frac{\partial x_{2}}{\partial z_{2}}
\end{array}\right] \\
=\left[\begin{array}{cc}
0 & 1 \\
-z_{1}^{-2} z_{2} & z^{-1}
\end{array}\right] \\
\\
\operatorname{det}(\mathbf{J})=\frac{z_{2}}{z_{1}^{2}}
\end{gathered}
$$

What is the new support?

$$
x_{1}, x_{2}>0 \quad \Rightarrow \quad z_{1}=\frac{x_{1}}{x_{2}}>0
$$

$$
\begin{aligned}
& x_{1}>0 \quad \Rightarrow \quad z_{2}>0 \\
& x_{1}<1 \quad \Rightarrow \quad z_{2}<1
\end{aligned}
$$

Combining the two, we get $0<z_{2}<1$.

$$
\begin{aligned}
& x_{2}>0 \quad \Rightarrow \quad \frac{z_{2}}{z_{1}}>0 \\
& x_{2}<1 \quad \Rightarrow \quad \frac{z_{2}}{z_{1}}<1
\end{aligned}
$$

Combining the two, we get

$$
\begin{equation*}
0<\frac{z_{2}}{z_{1}}<1 \quad \Rightarrow \quad 0<z_{2}<z_{1} \tag{1}
\end{equation*}
$$

This means that $0<z_{2}<\min \left\{1, z_{1}\right\}$. The new support is:

$$
\mathcal{A}=\left\{\left(z_{1}, z_{2}\right): z_{1}>0, \quad 0<z_{2}<\min \left\{1, z_{1}\right\}\right\}
$$

The new joint PDF is:

$$
\begin{aligned}
h\left(z_{1}, z_{2}\right) & =f\left(z_{2}, \frac{z_{2}}{z_{1}}\right) \cdot|\operatorname{det}(\mathbf{J})| \\
& =4 z_{2} \frac{z_{2}}{z_{1}} \cdot\left|\frac{z_{2}}{z_{1}^{2}}\right| \\
& =4\left(\frac{z_{2}^{3}}{z_{1}^{3}}\right)
\end{aligned}
$$

for $\left(z_{1}, z_{2}\right) \in \mathcal{A}$, and zero otherwise.
To find the marginal density of Z_{1}, we need to integrate out Z_{2}.

$$
\begin{aligned}
h\left(z_{1}\right) & = \begin{cases}\int_{0}^{z_{1}} 4\left(\frac{z_{2}^{3}}{z_{1}^{3}}\right) d z_{2} & 0<z_{1}<1 \\
\int_{0}^{1} 4\left(\frac{z_{2}^{3}}{z_{1}^{3}}\right) d z_{2} & z_{1} \geq 1\end{cases} \\
& = \begin{cases}z_{1} & 0<z_{1}<1 \\
\frac{1}{z_{1}^{3}} & z_{1} \geq 1\end{cases}
\end{aligned}
$$

(and zero otherwise.)

