Tutorial 8

November 19, 2020

Question 1

Consider an infinite series of $\operatorname{Bernoulli}(p)$ trials.
Let H_{1} be the number of successes in trials 1-50.
Let H_{2} be the number of successes in trials 51-100.
Let H_{3} be the number of successes in trials 101-150.
(a) Find the covariance between X, the number of successes in trials 1-100, and Y, the number of successes in trials 51-150.

$$
X=H_{1}+H_{2} \quad Y=H_{2}+H_{3}
$$

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbf{C o v}\left(H_{1}+H_{2}, H_{2}+H_{3}\right) \\
& =\mathbf{C o v}\left(H_{1}, H_{2}\right)+\operatorname{Cov}\left(H_{1}, H_{3}\right)+\mathbf{C o v}\left(H_{2}, H_{2}\right)+\mathbf{C o v}\left(H_{2}, H_{3}\right) \\
& =0+0+\operatorname{Var}\left(H_{2}\right)+0 \\
& =n p(1-p)=50 p(1-p)
\end{aligned}
$$

because H_{2} has distribution $\operatorname{Binomial}(n=50, p)$.
(b) Find the covariance between X, the number of successes in trials 1-100, and Z, the number of failures in trials 51-150.

$$
Z:=100-Y=100-H_{2}-H_{3}
$$

$$
\begin{aligned}
\operatorname{Cov}(X, Z) & =\operatorname{Cov}\left(H_{1}+H_{2}, 100-H_{2}-H_{3}\right) \\
& =-\mathbf{C o v}\left(H_{1}, H_{2}\right)-\operatorname{Cov}\left(H_{1}, H_{3}\right)-\mathbf{C o v}\left(H_{2}, H_{2}\right)-\mathbf{C o v}\left(H_{2}, H_{3}\right) \\
& =-0-0-\operatorname{Var}\left(H_{2}\right)-0 \\
& =-50 p(1-p)
\end{aligned}
$$

(c) Find the correlation between Y and Z.

$$
\begin{aligned}
\operatorname{Cov}(Y, Z) & =\operatorname{Cov}(Y, 100-Y) \\
& =-\operatorname{Cov}(Y, Y) \\
& =-\operatorname{Var}(Y)
\end{aligned}
$$

$$
=-100 p(1-p)
$$

because $Y=H_{2}+H_{3}$ has distribution $\operatorname{Binomial}(n=100, p)$.

$$
\begin{gathered}
\operatorname{Var}(Z)=\operatorname{Var}(100-Y)=\operatorname{Var}(Y) \\
\operatorname{Corr}(Y, Z)=\frac{\operatorname{Cov}(Y, Z)}{\sqrt{\operatorname{Var}(Y) \operatorname{Var}(Z)}}=\frac{-\operatorname{Var}(Y)}{\sqrt{\operatorname{Var}(Y) \operatorname{Var}(Y)}}=-1
\end{gathered}
$$

Question 2

X and Y are independent random variables with probability density functions:

$$
f_{X}(x)=\left\{\begin{array}{ll}
4 a x & 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array} \quad f_{Y}(y)= \begin{cases}4 b y & 0 \leq y \leq 1 \\
0 & \text { otherwise }\end{cases}\right.
$$

Find the correlation coefficient between $X+Y$ and $X-Y$.
We start by finding the values of a and b. Since X and Y are independent, integrating each marginal density over its respective support should equal 1.

$$
\int_{0}^{1} 4 a x d x=\left.2 a x^{2}\right|_{x=0} ^{x=1}=2 a=1 \quad \Rightarrow \quad a=\frac{1}{2}
$$

Similarly, we will obtain $b=\frac{1}{2}$.
We also require the variances of X and Y.

$$
\begin{aligned}
& \mathbf{E}(X)=\int_{0}^{1} 2 x^{2} d x=\left.\frac{2}{3} x^{3}\right|_{x=0} ^{x=1}=\frac{2}{3} \\
& \mathbf{E}\left(X^{2}\right)=\int_{0}^{1} 2 x^{3} d x=\left.\frac{1}{2} x^{4}\right|_{x=0} ^{x=1}=\frac{1}{2}
\end{aligned}
$$

Similarly, $\mathbf{E}(Y)=\frac{2}{3}$ and $\mathbf{E}\left(Y^{2}\right)=\frac{1}{2}$.

$$
\operatorname{Var}(X)=\mathbf{E}\left(X^{2}\right)-(\mathbf{E}(X))^{2}=\frac{1}{2}-\left(\frac{2}{3}\right)^{2}=\frac{9}{18}-\frac{8}{18}=\frac{1}{18}
$$

Similarly, $\operatorname{Var}(Y)=\frac{1}{18}$.
Let $U=X+Y$ and $V=X-Y$.

$$
\operatorname{Cov}(U, V)=\operatorname{Cov}(X+Y, X-Y)
$$

$$
\begin{aligned}
& =\operatorname{Cov}(X, X)-\operatorname{Cov}(X, Y)+\operatorname{Cov}(Y, X)-\operatorname{Cov}(Y, Y) \\
& =\operatorname{Var}(X)-0+0-\operatorname{Var}(Y) \\
& =0
\end{aligned}
$$

Since the covariance of U and V is zero, the correlation is automatically zero.

Question 3

Let $U \sim \operatorname{Unif}(-1,1)$ and $V=2|U|-1$.
(a) Find the distribution of V.

A $\operatorname{Unif}(-1,1)$ random variable will have CDF:

$$
F_{U}(u)=\frac{u-(-1)}{1-(-1)}=\frac{u+1}{2}
$$

for $-1 \leq u \leq 1, F_{U}(u)=0$ for $u<-1$, and $F_{U}(u)=1$ for $u>1$.

$$
\begin{aligned}
\mathbf{P}(|U| \leq u) & =\mathbf{P}(-u \leq U \leq u) \\
& =\mathbf{P}(U \leq u)-\mathbf{P}(U \leq-u) \\
& =\frac{u+1}{2}-\left(\frac{-u+1}{2}\right) \\
& =\frac{u+1+u-1}{2} \\
& =\frac{2 u}{2} \\
& =u \quad(0 \leq u \leq 1)
\end{aligned}
$$

Therefore $|U| \sim \operatorname{Unif}(0,1)$. Then

$$
2|U| \sim \operatorname{Unif}(0,2)
$$

and

$$
V=2|U|-1 \sim \operatorname{Unif}(-1,1)
$$

(b) Show that U and V are uncorrelated but not independent. This example illustrates that knowing the marginal distributions of two random variables does not determine the joint distribution.
The density of $U \sim \operatorname{Unif}(-1,1)$ is:

$$
f_{U}(u)=\frac{1}{1-(-1)}=\frac{1}{2}
$$

for $-1 \leq u \leq 1$, and zero otherwise.
The expected value of a $\operatorname{Unif}(a, b)$ random variable is $\frac{1}{2}(a+b)$.

$$
\operatorname{Cov}(U, V)=\mathbf{E}(U V)-\mathbf{E}(U) \mathbf{E}(V)
$$

$$
\begin{aligned}
& =\mathbf{E}(U(2|U|-1))-0 \cdot 0 \\
& =\mathbf{E}(2 U \cdot|U|-U) \\
& =2 \mathbf{E}(U \cdot|U|)-\mathbf{E}(U) \\
& =2 \mathbf{E}(U \cdot|U|) \\
& =2\left(\int_{-1}^{1}|u| \cdot u \cdot f_{U}(u) d u\right) \\
& =2\left(-\int_{-1}^{0} u^{2} \cdot \frac{1}{2} d u+\int_{0}^{1} u^{2} \cdot \frac{1}{2} d u\right) \\
& =0
\end{aligned}
$$

Since the covariance of U and V is zero, the correlation will also be zero. However,

$$
\mathbf{P}(V \geq 0 \mid U=0)=0 \neq \mathbf{P}(V \geq 0)=\frac{1}{2}
$$

which shows that U and V are not independent despite their covariance being zero.

Question 4

Pick a point uniformly distributed in the triangle $x \geq 0, y \geq 0, x+y \leq 1$. Compute The joint density of X and Y is:

$$
f_{X, Y}(x, y)= \begin{cases}c & x, y \geq 0, \quad x+y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Before we can start this question, we need to find the value of c and the individual marginal densities.

$$
\begin{aligned}
1 & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d y d x \\
& =\int_{0}^{1} \int_{0}^{1-x} c d y d x \\
& =c \int_{0}^{1}(1-x) d x \\
& =\left.c\left(-\frac{(1-x)^{2}}{2}\right)\right|_{x=0} ^{x=1} \\
& =\frac{c}{2}
\end{aligned}
$$

c must equal 2.

$$
\begin{aligned}
& f_{X}(x)=\int_{0}^{1-x} 2 d y=2(1-x), \quad 0 \leq x \leq 1 \\
& f_{Y}(y)=\int_{0}^{1-y} 2 d x=2(1-y), \quad 0 \leq y \leq 1
\end{aligned}
$$

The conditional densities are:

$$
\begin{aligned}
& f_{X \mid Y=y}(x)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{2}{2(1-y)}=\frac{1}{1-y}, \quad 0<x<1-y \\
& f_{Y \mid X=x}(y)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{2}{2(1-x)}=\frac{1}{1-x}, \quad 0<y<1-x
\end{aligned}
$$

(a) $\mathbf{E}(X \mid Y=y)$

$$
\begin{aligned}
\mathbf{E}(X \mid Y=y) & =\int_{-\infty}^{\infty} x \cdot f_{X \mid Y=y}(x) d x \\
& =\int_{0}^{1-y} x \cdot \frac{1}{1-y} d x \\
& =\left.\left(\frac{x^{2}}{2(1-y)}\right)\right|_{x=0} ^{x=1-y} \\
& =\frac{(1-y)^{2}}{2(1-y)} \\
& =\frac{1-y}{2}
\end{aligned}
$$

(b) $\mathbf{E}(Y \mid X=x)$

By a similar calculation,

$$
\mathbf{E}(Y \mid X=x)=\frac{1-x}{2}
$$

We can also verify that the law of total expectation holds.

$$
\begin{aligned}
\mathbf{E}(X)= & \int_{0}^{1} 2 x(1-x) d x=x^{2}-\left.\frac{2}{3} x^{3}\right|_{x=0} ^{x=1}=\frac{1}{3}=\mathbf{E}(Y) \\
\mathbf{E}(X)= & \mathbf{E}(\mathbf{E}(X \mid Y))=\mathbf{E}\left(\frac{1-Y}{2}\right)=\frac{1}{2}-\frac{1}{2} \mathbf{E}(Y) \\
& \frac{1}{3}=\frac{1}{2}-\frac{1}{2}\left(\frac{1}{3}\right)=\frac{3}{6}-\frac{1}{6}=\frac{2}{6}=\frac{1}{3}
\end{aligned}
$$

